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ABSTRACT 

Pigs coexist with diverse and dense commensal microbiota in their gastrointestinal tract 

(GIT). Lactobacilli, identified as common members of porcine intestinal microbiota, have 

been considered to be an important group of bacteria in maintaining the stability of GIT, 

in preventing intestinal infections and generally, in supporting intestinal health. Because 

several species of lactobacilli have GRAS (generally regarded as safe) status and some 

of them have an ability to interact with intestinal epithelial cells, thus promoting host-

bacterial interactions, their possible applications as mucosal vaccine vector and/or 

probiotics have aroused interest. 

Selection criteria for lactobacilli to be used as vaccine vector or probiotic include the 

abilities to adhere to the intestinal epithelium cells and colonize the lumen of the GI tract. 

The adherence to host tissues, which enables the organism to overcome local defences 

such as mucociliary function and peristaltis, is usually mediated by specialized proteins 

called adhesins. These adhesins are responsible for recognizing and binding to specific 

receptor structures of the host cells. Bacterial adhesins are often found in hair-like 

appendages called pili or fimbriae that extend outward from bacterial surface. 

Alternatively, they can be directly associated with the microbial cell surface. 

Surface layer proteins (Slps) of lactobacilli have been shown to confer tissue adherence. 

In this study, S-layer positive lactobacilli from the intestine and faeces of pigs were 

isolated and their ability to adhere to pig and human intestinal cells as well as to 

extracellular matrix (ECM) components, collagen, laminin and fibronectin were studied. 

The adherence of S-layer carrying lactobacilli varied from strong to moderate for human 

and porcine small intestine enterocytes and for the components of ECM and basal 

membranes (BM). Removal of the intact Slps reduced the adhesion of some strains to 

fibronectin and laminin, whereas, the adhesiveness to laminin increased with some 

strains. 

Besides the putative binding properties of Slps, a very large number of surface layer 

protein subunits present in an S-layer make the use of the S-layer structure a very 
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interesting alternative to surface display antigens. Therefore, the aim of this study was to 

characterize the S-layer proteins. Two new surface layer proteins (SlpB and SlpD), with 

potential to be tested as antigen carriers, were characterized, and three S-layer protein 

(slpB, slpC and slpD) genes were isolated, sequenced, and studied for their expression 

in Lactobacillus brevis neotype strain ATCC 14869. Under different growth conditions, 

L. brevis strain was found to form two colony types, smooth (S) and rough (R), and to 

express the S-proteins differently by mechanism not involving DNA rearrangements. The 

adhesion studies indicate that L. brevis adheres to human and pig intestinal epithelial 

cells but it is not currently known whether the binding is mediated by the surface proteins 

in this L. brevis strain of human origin. 

To identify the S-layer positive lactobacilli strains used in this study, a polyphasic 

taxonomic approach was applied. The methods used included 16S rRNA gene 

sequence analysis, numerical analysis of 16 and 23 rRNA gene ribotypes and DNA-DNA 

reassociation. In addition, all strains were included in a multilocus sequence analysis 

(MLSA) study for species identification using housekeeping genes encoding the 

phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit 

(rpoA). These results indicated that six out of eight porcine lactobacilli strains from 

Finland and the related L. sobrius strains, originating from porcine intestine from 

elsewhere, constitute a single species, L. amylovorus, and that the name L. sobrius 

should be considered as a later synonym of L. amylovorus. 

In the final part of this study, the adhesin FedF of Eschrichia coli F18 fimbriae was 

characterized. The work aims at developing lactobacilli as a live mucosal vaccine vector 

for pigs against diseases caused by F18+ E. coli. The F18 fimbriae carrying E. coli 

strains colonize the microvilli of porcine small intestinal epithelial cells and cause post-

weaning diarrhoea (PWD) and edema disease (ED) in pigs. It has been shown that oral 

immunization of weaned piglets with adhesins can induce a protective mucosal immune 

response. Naked FedF appeared to be very unstable but in our study it could be 

produced as a fusion protein with maltose binding protein (MBP). Specific adhesion to 

isolated porcine intestinal epithelial cells was demonstrated with MBP-FedF fusions as 
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well as the ability of anti-MBP-FedF antibodies to prevent binding of E. coli F18 to 

porcine epithelial cells. 
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ABBREVIATIONS 

aa amino acids 

ATCC American Type Culture Collection 

BM basal membrane 

CE competitive exclusion (so called Nurmi concept) 

DNA deoxyribonucleic acid 

ECM extracellular matrix 

ED edema disease 

EM electron microscopy 

ETEC enterotoxigenic Escherichia coli 

F18+ F18 fimbriae-expressing 

FITC fluorescein isothiocyanate 

FOS fructooligosaccharides 

FUT1 gene encoding the alpha (1,2)-fucosyltransferase 
(FUT1) 

GHCl guanidine hydrochloride 

GI gastrointestinal 

GIT gastrointestinal tract 

GRAS generally regarded as safe 

kb kilobase 

kDa kilodalton 

LAB lactic acid bacteria 

MBP maltose binding protein 

MLSA multilocus sequence analysis 

MW molecular weight 
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ORF, orf open reading frame 

PCR polymerase chain reaction 

pheS gene encoding phenylalanyl-tRNA synthase alpha-
subunit 

PWD post-weaning diarrhoea 

RBS  ribosome binding site 

RNA  ribonucleic acid 

rpoA gene encoding DNA-directed RNA polymerase 
alpha-subunit 

SCWP  secondary cell wall polymers 

SDS-PAGE  sodium dodecyl sulphate polyacrylamide gel 
electrophoresis 

S-layer  surface layer 

slp gene encoding surface layer protein 

Slps surface layer proteins 

spp.  species 

VTEC verotoxigenic Escherichia coli 
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1. INTRODUCTION 

The intestinal commensal microbiota of pigs comprises hundreds of different types of 

microorganisms (Stewart, 1997; Inoue et al., 2005). The members of the genus 

Lactobacillus are important residents of the gastrointestinal (GI) microbiota and have 

been subjects of increasing interest due to their possible role in the maintenance of GI 

health. Because of these putative health promoting properties, Lactobacillus species are 

widely used as probiotics (Ouwehand et al., 2002). One important criterion proposed for 

a probiotic bacterium is its ability to adhere and colonize host tissues, which enables 

multiplication and survival of the bacterium in the host and may prevent the colonization 

of pathogenic bacteria via competitive exlusion (CE). 

The F18 fimbriae-expressing (F18+) E. coli cause post-weaning diarrhoea (PWD) and 

edema disease (ED) in newly weaned piglets. The key virulence factors in diarrhoea are 

enterotoxins and fimbrial adhesins (Berberov et al., 2004; Zhang et al., 2006). Protection 

against these diseases can be established by preventing the fimbrial adhesion of these 

bacteria to the enterocytes of the porcine intestine. The FedF protein of F18 fimbriae 

was recognised as the adhesin and antibodies against FedF were found to inhibit the 

adhesion of F18+ E. coli to porcine enterocytes (Smeds et al., 2001; Smeds et al., 2003). 

However, oral immunisation with purified F18 fimbriae did not result in protection against 

ED by a challenge infection with F18+ verotoxigenic E. coli (VTEC) (Verdonck et al., 

2007) and there are no commercial vaccines available against infections caused by F18 

fimbriae-carrying E. coli strains. 

Like many other bacteria, several species of Lactobacillus have a surface (S-) layer as 

the outermost component of the cell (reviewed in Åvall-Jääskeläinen and Palva, 2005). 

The function of Lactobacillus S-layers characterized so far is involved in mediating 

adhesion to different host tissues. In addition to surface layer proteins (Slps) adhesive 

properties, the very large number of S-layer subunits present on the cell surface has 

prompted research aiming at the use of S-layers as a vehicle for the delivery of 

biologically active compounds, such as drug molecules, antibodies, enzymes and 

vaccine antigens (Sleytr et al., 2007). 
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The accurate species identification of bacteria is of fundamental importance in the 

development of new mucosal vaccine vectors or probiotics. Species of Lactobacillus 

form the most numerous genus in the heterogeneous group of lactic acid bacteria (LAB). 

The genus contains about one hundred described species, which are subdivided by 16S 

rRNA analysis, DNA-DNA hybridization and other phylogenetic methods, into eight 

major groups. The 16S rRNA gene is a reliable phylogenetic marker but is not an 

effective identification tool as it does not allow discrimination among closely related 

species. A multilocus sequence analysis (MLSA), on the contrary, effectively offers a 

high resolution and yields a robust identification system. MLSA compares the primary 

DNA sequences from multiple conserved protein coding loci for assessing the diversity 

and relation of different isolates across related taxa. The combined use of the 

phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit 

(rpoA) gene sequences offers a reliable identification system for nearly all Lactobacillus 

species (Naser, 2006). 
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2. LITERATURE REVIEW 

2.1. The genus Lactobacillus 

Members of the genus Lactobacillus are not only found in plants and in plant-derived 

materials, such as silage, grains and foods, but also in the gastrointestinal tract (GIT) of 

humans and animals (Stewart, 1997). Species of Lactobacillus form the most numerous 

genus in the heterogeneous group of LAB. Lactobacilli are Gram-positive, non-

sporeforming and strictly fermentative bacteria producing lactic acid as the primary end 

product (Salminen and von Wright, 1998; Makarova et al., 2006). The lactobacilli have 

been formely classified into three physiological groups on the basis of their carbohydrate 

metabolism i.e. (1) the obligatory homofermantative, which possess fructose-1,6-

biphosphate aldose and ferment hexoses, (2) the facultative heterofermantative 

lactobacilli, which possess both aldose and phosphoketolase and ferment hexoses, 

pentoses and gluconate and (3) the obligatory heterofermantative species lacking 

aldolase (Hammes and Vogel, 1995). 

Approximately one hundred species described for the genus Lactobacillus 

(http://www.bacterio.cict.fr/l/lactobacillus.html) are subdivided by 16S rRNA analysis, 

DNA-DNA hybridization and other phylogenetic methods, into eight major groups; 

Lactobacillus buchneri, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus 

plantarum, Lactobacillus reuteri, Lactobacillus sakei, Lactobacillus salivarius, and 

Lactobacillus brevis group (Salminen and von Wright, 1998; Dellaglio and Felis, 2005). 

The L. delbrueckii group was later renamed the Lactobacillus acidophilus group. Based 

on DNA-DNA-hybridization studies, the large L. acidophilus group is divided into six 

groups, A1-A4 and B1-B2, that correspond to previously assigned species, 

L. acidophilus (A1), L. crispatus (A2), L. amylovorus (A3), L. gallinarum (A4), L. gasseri 

(B1) and L. johnsonii (B2) (Fujisawa et al., 1992). Although six genome clusters of the 

L. acidophilus group have been designated as separate species with validly published 

names, they are difficult to distinguish solely on the basis of phenotypic characteristics. 

Recent EcoRI ribotyping data further suggests that the group should be divided into 

14 genotypes, A1-A11, B1-B3, and gives evidence that some of the previously identified 

http://www.bacterio.cict.fr/l/lactobacillus.html
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Lactobacillus strains would require reclassification as different species (Ryu et al., 

2001). The taxonomy of the genus Lactobacillus has changed considerably as 

a consequence of the introduction of new genomic techniques for the identification of 

Lactobacillus.  

The heterogeneity poses challenges and opportunities when characterizing or exploiting 

individual strains. At the time of writing (August 2007), 11 Lactobacillus genome 

sequences have been published, and at least 12 more sequencing projects are ongoing 

(Makarova and Koonin, 2007). These studies will dramatically improve our 

understanding of metabolic processes, bioprocessing capabilities and potential roles of 

the lactobacilli in health and well-being. 

 

2.2. Lactobacillus in the normal intestinal microbiota 

The normal intestinal microbiota works as a barrier against pathogens, contributes to 

degradation of some food components, stimulates the host immune system, and 

produces certain vitamins, enzymes and short-chain fatty acids (Holzapfel et al., 1998). 

The normal gut bacterial population of an adult human is estimated to comprise more 

than 400 species, with the predominance of obligate anaerobes (Rolfe, 1997). The 

presence and composition lactobacilli in the microbiota of the GIT of mammalian animals 

closely resemble those found in humans, although some variations at the species level 

occur depending on the host (Tannock, 1999). Also, the anatomical differences of the 

alimentary canals influence the microbiota: e.g. the non-secreting stratified squamous 

epithelia in the fore-stomach of pigs are efficiently colonized by lactobacilli (Tannock, 

1997).  
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2.2.1. Lactobacillus in porcine gastrointestinal tract 

The porcine GIT harbours an extremely complex microbiota which has a profound 

impact on host’s health. Several studies have investigated the species diversity of the 

pig intestine through phenotypic analysis of isolates obtained by anaerobic culturing 

(Tannock and Smith, 1970; Salanitro et al., 1977; Robinson et al., 1981; Varel, 1987). 

Culturing, however, is likely to recover some bacteria more readily than others, and it is 

laborious to perform (Zoetendal et al., 2004). The development of new molecular tools 

has revolutionized our knowledge of gut microbial diversity (Pryde et al., 1999; Leser et 

al., 2002). Unlike in humans, lactobacilli are the dominant LAB in the pig intestine (at the 

level of 9 log bacterial cells per gram chyme) (Konstantinov et al., 2004).  

Lactobacilli establish early in the piglet’s intestine, and although succession occurs 

throughout the pig’s lifetime, they remain a predominant part of the intestinal bacterial 

community. Several reports showed that three major groups of Lactobacillus spp. are 

identified from the GIT of pigs. (1) The first group comprises obligately 

homofermentative lactobacilli, typically represented by members of the L. acidophilus 

group such as L. amylovorus, L. crispatus, L. gallinarum, and L. acidophilus. (2) The 

second group of lactobacilli associated with the GIT of pigs comprises facultatively 

heterofermentative strains. The only species of this group that has been identified 

frequently is L. plantarum. (3) The third group includes a rather large number of 

obligately heterofermentative species including L. reuteri, L. mucosae, and L. rossiae. 

L. reuteri –related strains were shown to constitute the major part of the 

heterofermentative lactobacilli identified from pig faeces (Pryde et al., 1999). 

 

2.2.2. Lactobacillus as probiotics 

The findings that colonization by lactobacilli and other lactic acid bacteria, improves 

infection resistance of the host, have led to the production and consumption of 

probiotics. A probiotic organism is a live microbial supplement that beneficially affects 
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the health and nutrition of the host (Salminen et al., 1996). To date, several health-

promoting effects of probiotics have been proposed e.g. prevention of the pathogen 

colonization in the GIT via competitive exclusion (CE), and/or synthesis of inhibitory 

compounds (Kaur et al., 2002; Isolauri et al., 2004). The ability to adhere to intestinal 

mucosa is considered an important requirement for microorganisms intended for 

probiotic use, allowing at least a temporary colonization of the human and animal 

intestinal tract. As microbial feed additives, they offer potential as an alternative to 

antimicrobials; both as a means of controlling pathogen carriage and improving growth 

rate and feed conversion. However, the mechanisms underlying the health effects and 

the host-probiotic communication in prophylactic and/or therapeutic treatments have 

remained poorly characterized. The probiotic strains are expected to fulfil several health-

promoting characteristics and safety criteria. These are listed in Table 1. 
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Table 1. Expected characteristics and safety criteria of probiotics (Mercenier et al., 2003). 

Non toxic and non pathogenic 

Accurate taxonomic identification 

Normal inhabitant of the targeted species 

Capability to survive, proliferate and be metabolically active in the targeted site, which implies: 

 resistance to gastric juice and bile 

 ability to persistent in the GIT 

 ability to adhere 

 ability to compete with the resident microbiota 

Production of antimicrobial substances 

Antagonism towards pathogenic bacteria 

Ability to modulate immune responses 

Ability to exert at least one clinically documented health benefit 

Genetically stable 

Amenability of the strain and stability of the desired characteristics during the processing, 
storage and delivery 

Viability at high populations 

Desirable organoleptic and technological properties when included in industrial prosesses 

Isolation from suitable habitats 
 

 

2.2.3. Adhesive properties in Lactobacillus 

For successful colonization, intestinal bacteria, including lactobacilli, have been 

suggested to resist the peristaltic movement by adhering to intestinal epithelia and/or 

mucus, particularly in the upper parts of the alimentary canal (Rojas and Conway, 1996). 

Several factors contribute to the interaction of lactobacilli with the host tissues, such as 

cell surface hydrophobicity and autoaggregation (Kos et al., 2003), lipoteichoic acids 

(Granato et al., 1999) and cell surface proteins.  

Lactobacilli have been frequently observed to bind to epithelial cells and dissected tissue 

samples of the alimentary canal from human and animals (Fuller, 1973; Kotarski and 
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Savage, 1979; Mäyrä-Mäkinen et al., 1983; Conway et al., 1987; Conway and Adams, 

1989; Henriksson et al., 1991; Sarem-Damerdji et al., 1995; Jin et al., 1996; Yuki et al., 

2000), to intestinal mucus (Rojas and Conway, 1996; Kirjavainen et al., 1998; 

Kirjavainen et al., 1999; Matsumura et al., 1999; Tuomola et al., 1999; Roos et al., 2000; 

Roos and Jonsson, 2002; Gusils et al., 2003; Collado et al., 2007), to cultured human 

carcinomal intestinal cell lines (Adlerberth et al., 1996; Granato et al., 1999; Kirjavainen 

et al., 1999) and to the components of the extracellular matrix (ECM) (Nagy et al., 1992; 

Harty et al., 1994; McGrady et al., 1995; Toba et al., 1995; Styriak et al., 2003). The 

level of adhesion has been estimated either by microscopic visualization or by using 

metabolically radiolabelled bacteria.  

Reports on the adherence are numerous, but detailed knowledge of the adhesion 

mechanisms is very limited. Species-specificity in the adherence of lactobacilli has also 

been suggested (Fuller, 1973; Mäyrä-Mäkinen et al., 1983; Yuki et al., 2000), but the 

topic has remained controversial, since intestinal and environmental lactobacilli adhere 

to non-host tissue targets as well (Kotarski and Savage, 1979; Conway et al., 1987; 

Sarem-Damerdji et al., 1995; Jacobsen et al., 1999). In general, lactobacilli seem to 

express preference for adhesion to epithelial cells of their own host but a strict host-

species specifity of the adhesion seems unlikely. 

Caco-2 and Intestine 407 cell lines, ECM proteins and mucus have been commonly 

used in adhesion studies with lactobacilli. The Caco-2 cell layer isolated from a human 

colonic adenocarcinoma (Fogh et al., 1979) structurally resembles differenciated 

enterocytes at the intestinal epithelium (Pinto et al., 1983). Intestine 407 cell line derived 

from a malignant small intestine of a human embryo (Henle and Deinhardt, 1957) does 

not differentiate to a polarized cell layer (Favre-Bonte et al., 1995). The adhesion 

mechanisms involved are not known, in one report mannosyl conjugates were proposed 

as adhesion targets (Adlerberth et al., 1996). 

ECM proteins are distributed in basal membrane (BM) and the intestinal matrix, which 

underlie the intestinal epithelial cells (Fig. 1). They may become exposed by trauma, or 

viral and bacterial infections (Ljungh and Wadstrom, 1996). Furthermore, the normal 



shedding of epithelia through cell turnover provides the epithelial surface with ECM 

components. The ECM is involved in cellular development and function, growth and 

differentation, cell adhesion as well as migration. The main components of ECM belong 

to three major classes of biomolecules such as 1) structural proteins: collagen and 

elastin, 2) specialized proteins: e.g. fibrillin, fibronectin and laminin, and 3) 

proteoglygans. ECM proteins exposed on the epithelia are used as targets for bacterial 

adhesion. The adherence of pathogens to ECM components has been investigated 

thoroughly and shown to promote colonization and virulence of the pathogens 

(Westerlund and Korhonen, 1993). To prevent intestinal infection, it is therefore 

important to prevent the adherence of pathogenic bacteria to ECM proteins, as well as to 

epithelial cells. Such a Lactobacillus adherence may protect the host against bacterial 

invasion at damaged epithelia where the ECM has become exposed.  

 

 

Fig.1. Illustration depicting ECM in relation to epithelium, endothelium and connective tissue 

adapted from Wikipedia September 2007 (http://en.wikipedia.org/wiki/Extracellular_matrix). 
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There are number of studies that report binding of lactobacilli strains to mucus from 

animals (Roos et al., 2000; Rojas et al., 2002; Gusils et al., 2003; Sun et al., 2007). As 

the outermost luminal layer, mucus is the first intestinal component or surface that 

lactobacilli are likely to contact before reaching the epithelial cells. Hence, this binding to 

mucus can have a substantial role in the colonization of intestinal surfaces. The main 

structural components of mucus are large molecules called mucins. Mucins provide 

physical protection to epithelia and facilitate the smooth transit of ingested food material 

(Tannock, 1999).  

The reduced adhesiveness of lactobacilli treated with proteinases has led to the 

hypothesis that proteinaceous molecules mediate the adhesion of lactobacilli in the host 

intestine (Fuller, 1975; Henriksson et al., 1991; Reid et al., 1993; Greene and 

Klaenhammer, 1994). These include the mucus binding proteins from L. reuteri (Roos 

and Jonsson, 2002; Bath et al., 2005), L. acidophilus (Buck et al., 2005) and 

L. plantarum (Boekhorst et al., 2006). In addition to the high molecular weight (MW) 

mucus binding protein of L. reuteri (Roos and Jonsson, 2002), mucus/collagen binding 

proteins with sequence similarity to solute binding proteins of ABC transporters have 

been described for L. reuteri strains (Miyoshi et al., 2006). Furthermore, genome 

analysis of L. plantarum has revealed several cell surface proteins with adhesive domain 

structures (Boekhorst et al., 2006). The involvement of carbohydrates and lipoteichoic 

acids in the adherence of lactobacilli to intestinal epithelia has also been reported 

(Fuller, 1975; Henriksson et al., 1991; Coconnier et al., 1992; Greene and 

Klaenhammer, 1994; Adlerberth et al., 1996; Ahrne et al., 1998; Boris et al., 1998; 

Granato et al., 1999; Neeser et al., 2000), but the adhesive receptors have not been 

identified. Overall, the various results suggest that lactobacilli adhere to host tissues via 

mechanisms that vary in different species. 

A few adhesins of lactobacilli have been characterized at the molecular level. These 

include the collagen binding CnBP of L. reuteri (Aleljung et al., 1994; Rojas and Conway, 

1996), the collagen and laminin-binding CbsA of L. crispatus (Sillanpää et al., 2000; 

Antikainen et al., 2002), fibronectin binding SlpA of L. brevis (Hynönen et al., 2002), and 
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the pig and hen mucus-binding Mub and MapA of L. reuteri (Roos and Jonsson, 2002; 

Miyoshi et al., 2006). 

 

2.3. S-layer proteins (Slps) of Lactobacillus 

S-layers are crystalline arrays of proteinaceous subunits located at the outermost part of 

the cell wall in several species of the genus Lactobacillus, as well as in many other 

bacteria and Archaea. Lactobacillar S-layers are relatively small, 25 kDa to 71 kDa in 

size (Åvall-Jääskeläinen and Palva, 2005), whereas the molecular masses of S-layers in 

other bacterial species range up to 200 kDa (Sara and Sleytr, 2000). S-layers are 

normally 5–15 nm thick possessing a smoother outer surface compared with a more 

structured inner surface. Each S-layer forms a highly porous structure with pores of an 

identical size and morphology. Based on electron microscopy, the S-layer subunits are 

composed of lattices with oblique, square or hexagonal symmetry (Sara and Sleytr, 

2000). The oblique lattice type was identified in the S-layers of L. acidophilus (Smit et 

al., 2001), L. brevis (Jakava-Viljanen et al., 2002) and L. helveticus (Lortal et al., 1997) 

and the hexagonal lattice type in L. casei and L. buchneri (Masuda and Kawata, 1985). 

The S-layer subunits are non-covalently linked to each other and to the supporting cell 

envelope, and can be disintegrated into monomers by denaturing agents such as urea 

or GHCl, by metal-chelating agents or by cation substitution (Sara, 2001). In addition to 

peptidoglycan, the rigid cell envelope of lactobacilli is composed of secondary cell wall 

polymers (SCWP) such as teichoic acid, lipoteichoic acids, lipoglycans or neutral or 

acidic glygans (Navarre and Schneewind, 1999; Neuhaus and Baddiley, 2003).  

S-layer protein encoding genes have been cloned and sequenced from two L. brevis 

strains (Vidgrén et al., 1992; Jakava-Viljanen et al., 2002), two L. acidophilus strains 

(Boot et al., 1993; Altermann et al., 2005), one L. helveticus strain (Callegari et al., 

1998), one L. crispatus strain (Sillanpää et al., 2000) and seven L. gallinarum strains 

(Hagen et al., 2005). Deposited in GeneBank (National Center for Biotechnology 

Information, Bethesda, MD, USA) are also several S-layer protein encoding gene 
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sequences, which are either unpublished or have not been described in detail in 

publications. Additionally, strains of L. amylovorus, L. buchneri, L. kefir and L. parakefir 

have also been shown to possess an S-layer (Boot et al., 1996b; Garrote et al., 2004), 

but their S-layer protein genes have not yet been sequenced. The presence of multiple 

S-layer protein genes seems to be quite common for lactobacilli. Formerly, L. johnsonii 

and L. gasseri were proposed to lack an S-layer (Boot et al., 1996), but Ventura et al. 

(2002) identified the protein called aggregation-promoting factor from these species as 

an S-layer-like protein, having amino acid composition and physical properties similar to 

lactobacillar S-layers. However, the formation of a regular lattice structure has not been 

demonstrated. Several different strains of these species were shown to possess two 

genes encoding surface proteins, one silent and one actively transcribed (Boot et al., 

1995; Sillanpää et al., 2000). These bacteria may express alternative S-layer protein 

genes, most likely to adapt to different stress factors such as drastic changes in the 

environmental conditions. In most of the characterized cases, the mechanism of S-layer 

variation is based on DNA rearrangements, but in L. brevis ATCC 14869, the variation of 

S-layer protein content took place by a unique mechanism involving activation of 

transcription by a soluble factor as a result of an environmental change (Jakava-Viljanen 

et al., 2002). 

As S-layer proteins represent 10-15% of the total amount of proteins in Lactobacillus 

cells (Boot and Pouwels, 1996), their transcription and secretion mechanisms must be 

efficient and tightly regulated. Multiple promoters precede several S-layer genes (Boot 

and Pouwels, 1996), including S-layer genes of L. acidophilus (Boot et al., 1996) and 

L. brevis (Vidgrén et al., 1992; Kahala et al., 1997; Jakava-Viljanen et al., 2002) and are 

likely to ensure efficient transcription of these genes.  

Despite their similar amino acid composition, such as a low content of cysteine and 

methionine as well as a high content of hydrophobic amino acids and hydroxyl amino 

acids, sequence similarity between the S-layer protein genes can only be found between 

genes of related species (Åvall-Jääskeläinen and Palva, 2005). This has also been 

demonstrated for the S-layer protein genes of lactobacilli by DNA–DNA hybridizations. 
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The gene and protein sequences of 10 S-layer proteins belonging to group A of the 

L. acidophilus complex are currently available in GeneBank (Hagen et al., 2005). 

A comparison of the amino acid sequences of these proteins has revealed two 

conserved regions, namely, an N-terminal signal sequence of ca. 30 amino acids, which 

directs secretion of the protein by the general secretory pathway and a C-terminal 

domain of approximately 123 amino acids that anchors the protein to the cell surface. 

A variable domain is located between the two conserved regions. 

The functions of Slps are not yet completely revealed but it has been proposed that 

these structures protect the microbe from hostile environmental agents and aid in 

maintaining cellular integrity (Åvall-Jääskeläinen and Palva, 2005). Several lactobacillar 

S-layers have been identified as putative adhesins with an affinity for various tissue 

compartments or molecules. Slps of lactobacilli have been shown to confer tissue 

adherence, including L. crispatus and L. acidophilus, whose ability to bind to host 

epithelial cells is decreased after removal or disruption of the S-layer proteins (Sillanpää 

et al., 2000; Buck et al., 2005; Frece et al., 2005). The L. brevis ATCC 8287 SlpA protein 

has been shown to possess affinity for human intestinal epithelial cell lines, urinary 

bladder, endothelial cells and fibronectin (Hynönen et al., 2002). The ability of the 

receptor-binding region of SlpA to adhere to fibronectin was also confirmed with 

a lactococcal surface display system (Åvall-Jääskeläinen et al., 2003). Recently, by 

using surface plasmon resonance, SlpA was found to interact with fibronectin and 

laminin whereas its interaction with collagen and fibrinogen was found to be of much 

lower affinity (de Leeuw et al., 2006). In addition, S-layer protein extracts from 

L. helveticus have been shown to inhibit enterohaemorrhagic E. coli adhesion to host 

epithelial cells (Johnson-Henry et al., 2007). 

 

2.4. F18+ E. coli 

Newly weaned piglets are highly susceptible to F18+ enterotoxigenic E. coli (ETEC) and 

F18+ verotoxigenic E. coli (VTEC) infections. F18+ E. coli infections causing PWD and 



 25 

ED in young pigs occur mostly 1–2 weeks post-weaning (Bertschinger et al., 1990) and 

lead to considerable economic losses in pig farms. F18+ E. coli strains adhere to the 

microvillus of the small intestinal epithelial cells of weaned pigs but not to newborn pigs 

(Nagy, B. et al., 1992). F18 fimbriae are an important virulence factor of ETEC and 

VTEC. Adherence of F18+ E. coli to porcine intestinal epithelial cells is mediated by the 

adhesin (FedF) of F18 fimbriae. Antibodies against FedF were seen to inhibit the 

adhesion of F18+ E. coli to porcine enterocytes (Smeds et al., 2001; Smeds et al., 2003). 

Susceptibility to these F18+ E. coli infections in pigs is shown to be dependent on the 

presence of the specific F18 receptor (F18R) on the porcine intestinal epithelial cells 

(Bertschinger et al., 1993; Frydendahl et al., 2003). Binding of F18 fimbriae to the F18R 

on the brush border of porcine enterocytes result in colonization of the small intestine. 

This leads to subsequent secretion of entero- or verotoxins. 

Pig populations consist of F18R negative (F18R−) and F18R positive (F18R+) animals 

and only the latter are subject to infection with F18+ E. coli (Frydendahl et al., 2003). The 

F18R status of pigs is genetically determined (Bertschinger et al., 1993) and 

susceptibility to F18+ E. coli infections appeared to be dependent on the activity of the 

FUT1 gene, encoding the alpha (1,2)-fucosyltransferase (FUT1) (Meijerink et al., 1997; 

Meijerink et al., 2000). Despite the presence of the F18R, there is a low prevalence of 

F18+ E. coli infections in suckling piglets. This suggests the importance of inhibiting the 

molecules present in sow's milk. Indeed, it has been shown that antibodies in sow's milk 

provide protection to piglets against enteropathogens such as F4+ E. coli (Riising et al., 

2005).  

The fed gene cluster is composed of five genes (Fig. 2). The gene encoding the major 

protein, FedA, and two genes encoding the minor proteins, FedE and FedF, were first 

described by Imbrechts et al. (1992, 1996). The rest of the fed genes, fedB and fedC, 

were characterized and found to encode the putative usher protein (FedB) and 

chaperone (FedC) of F18 fimbriae. Ushers are large (80-100 kDa) outer membrane 

proteins found in most E. coli fimbrial determinants. In fimbrial biosynthesis, fimbrial 

subunits are translocated to extracellular sites through a channel made up of several 



usher proteins. Chaperones cap the subunits of the fimbrial complex and protect them 

from premature assembly and proteolysis. The specific adhesive property of F18 is 

associated with FedF, but the function of FedE has remained unknown (Smeds et al., 

2001). 

 

 

Fig. 2. Genetic organization of the fed gene cluster adapted from Smeds et al. (2001). Molecular 

masses calculated for the gene products are given in kDa in the boxes. The encoding the 

adhesion of F18 fimbriae is presented by the yellow box. 

 

There are two variants of F18 fimbriae, differing in the amino acid sequence of the major 

fimbrial subunit FedA (Nagy et al., 1997). This variation is responsible for the antigenic 

difference between F18ab and F18ac, the latter containing the FedA with an extra 

proline residue (Imberechts et al., 1994; Rippinger et al., 1995; Verdonck et al., 2004). 

The F18ac variant is mostly produced by ETEC strains, whereas F18ab by VTEC strains 

(Wittig et al., 1994; Nagy et al., 1997; Bosworth et al., 1998). The variants can be 

distinguished by serology and by restriction enzyme digestion of PCR products 

(Bosworth et al., 1998). The F18ab variant is often expressed by VTEC O139 strains 

and causing porcine edema disease (ED). The F18ac fimbrial E. coli strains often belong 

to serogroup O141 or O157 and cause diarrhoea by expressing enterotoxins (STa or 

STb) either together with or without verotoxin (Nagy et al., 1997). 

Typical signs of ED in pigs are subcutaneous edema of the eyelids, neurological signs 

and sometimes also diarrhoea. After onset of signs, ED is fatal even when treated with 

antimicrobials and pigs often die without previous signs of illness. Morbidity is usually 
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low, but as case fatality can reach 90%, some farms may suffer from mortality rate of up 

to 60%. The signs of PWD in pigs include watery diarrhoea or sometimes a mixture of 

ED and PWD. These infectious endemic porcine diseases are widely spread (Verdonck 

et al., 2003; Cheng et al., 2005) and are a major cause of economic losses in the pig 

industry due to diarrhoea, growth retardation and mortality. PWD caused by F18+ E. coli 

is also present in Finland. 

Several methods to prevent F18+ E. coli infections have been examined (Imberechts et 

al., 1997; Kyriakis et al., 1997; Nollet et al., 1999; Felder et al., 2000; Tsiloyiannis et al., 

2001), but no vaccine or effective therapy exist to date. If F18 fimbriae-specific 

antibodies are present due to active immunization, reduction of F18+ E. coli colonization 

has been reported (Sarrazin and Bertschinger, 1997; Bertschinger et al., 2000). 

However, mucosal immunization of piglets with purified F18 fimbriae does not protect 

them against F18+ E. coli infection (Verdonck et al., 2007). 

Because the FedF adhesin is only a minor component of the F18 fimbriae, whole 

fimbriae do not usually obtain a strong antibody response to the adhesin or protection 

against the F18+ E. coli infection. Oral immunization of piglets with purified F4 fimbriae 

was reported to induce a protective F4-specific immune response (Van den Broeck et 

al., 1999). However, the adhesive subunit of F4 fimbriae is the major subunit FaeG. The 

F18 fimbrial adhesin FedF is conserved among F18+ E. coli field isolates from different 

places around the world (Tiels et al., 2005). Therefore, recombinant FedF or its lectin 

domain (Smeds et al., 2003) should be considered for oral immunization of piglets. 

 

2.5. Lactobacillus as live vaccine delivery vectors 

Lactobacilli possess a number of properties which make them attractive candidates for 

oral vaccination purposes. These bacteria are considered to be safe organisms with 

a GRAS (generally regarded as safe) status. This is in contrast to other live vaccine 

carriers used (e.g., Salmonella, E. coli, vaccinia virus), which cannot be classified as 

safe. Furthermore, a particularly attractive feature of lactobacilli is their capacity to 
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colonize certain regions of the mucosa, which permits induction of local immune 

responses. An additional benefit of the use of lactobacilli is that some strains are 

considered to show health-promoting (probiotic) activities for humans and animals 

(Pouwels et al., 2001).  

Oral presentation of antigens offers a number of advantages over other routes 

(parenteral administration). Oral administration of vaccines is convenient, can be carried 

out on a large scale and is relatively inexpensive. Furthermore, many pathogens enter 

the body via the mucosal surfaces of the body. Moreover, oral immunization frequently 

evokes both local and systemic immune responses, resulting in an effective elimination 

of foreign invaders (Mercenier et al., 2000). 

S-layers have been identified in several Lactobacillus species. In some of these 

bacteria, S-layers have been shown to function as adhesins mediating binding of 

Lactobacillus cells to the host’s epithelial cells and/or ECM (reviewed in Åvall-

Jääskeläinen and Palva, 2005). Due to these observed adhesive properties, including 

their high degree of structural regularity and their self-assembly properties, the possible 

therapeutic applications of lactobacillar S-layers have gained increasing interest e.g. as 

targeted live antigen delivery vehicles to host tissues (Shaw et al., 2000; Reveneau et 

al., 2002; Scheppler et al., 2002). S-layer could provide a superior expression level and 

surface density of the required antigen as compared to other bacterial antigen 

presentation systems. It has already been demonstrated that S-layer protein subunits 

can be modified to carry foreign epitopes as a uniform recombinant S-layer on the 

Lactobacillus cell surface (Smit et al., 2002; Åvall-Jääskeläinen et al., 2002). 

Immunization studies with Lactobacillus S-layer antigen constructs are still lacking, but 

the results of the few immunization studies utilizing recombinant S-layer proteins of other 

bacteria (Umelo-Njaka et al., 2001; Riedmann et al., 2003) further encourage the 

development of Lactobacillus S-layer based antigen vectors. Immunization studies with 

piglets need be conducted with Lactobacillus vaccine vectors surface-displaying the 

receptor-binding domain of E. coli F18 fimbriae as part of the S-layer before conclusion 

on the suitability of these contructs as live vaccine vectors can be drawn. 
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3. AIMS OF THE STUDY 

This study was aimed to isolate new S-layer positive Lactobacillus species from the 

porcine intestine and faeces for the later use as vaccine vectors and/or probiotics for 

pigs, to identifiy the lactobacilli found by using polyphasic taxonomic studies and to test 

S-layer-expressing strains for their ability to adhere to different host tissues. The S-layer 

of L. brevis ATCC 14869 was chosen for basic characterization to aid structure-function 

analysis. 

This study was part of a larger project aimed at developing a live oral LAB vaccine 

against PWD and ED in pigs caused by F18+ E. coli. 

 

The specific aims were: 

1. To isolate S-layer proteins carrying Lactobacillus species from the pig intestine and 

faeces in order to obtain host specific strains. 

2. To identify and characterize the porcine-specific S-layer proteins carrying 

Lactobacillus strains. 

3. To characterize the genes encoding the S-layer protein of L. brevis ATCC 14869 and 

study their expression in different growth conditions. 

4. To develop adhesion assays to test S-layer-expressing strains and the adhesin of 

E. coli F18 fimbriae for their ability to adhere to host tissues. 

5. To characterize the adhesin of E. coli F18 fimbriae and further test the adhesin on 

the intestinal epithelium of piglets. 
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4. MATERIALS AND METHODS 

The bacterial strains, plasmids and cell line used in this study are listed in Table 2.The 

methods are described in detail in the original articles and summarized in Table 3. 

Table 2. Bacterial strains, plasmids and cell line used in this study. 

Bacterial strain, plasmid and 
cell line 

Origin/relevant property Article Reference and/or source 

    
Bacterial strains    
L. amylovorus DSM 20531 type cattle waste-corn fermentation II Nakamura, 1981, DSMZ 
L. amylovorus DSM 20532 cattle waste-corn fermentation II Nakamura, 1981, DSMZ 
L. amylovorus DSM 20552 intestine of adult II Lauer et al., 1980, DSMZ 
L. amylovorus LMG 9496 type cattle waste-corn fermentation II Nakamura, 1981, LMG 
L. sobrius DSM 16698 type piglet faeces II Konstantinov et al., 2006, 

DSMZ 
L. sobrius AD5 piglet faeces II Konstantinov et al., 2006 
L. amylovorus LAB2 porcine faeces I, II These studies 
L. amylovorus LAB7 porcine faeces I, II These studies 
L. amylovorus LAB8 porcine faeces I, II These studies 
L. amylovorus LAB13 porcine ileum I, II These studies 
L. amylovorus LAB16 porcine jejunum I, II These studies 
L. amylovorus LAB31 porcine jejunum I This study 
L. amylovorus LAB52 porcine ileum I, II These studies 
L. crispatus LAB32 porcine jejunum I This study 
L. mucosae LAB87 porcine ileum I This study 
L. brevis ATCC 8287 green, fermenting Sevillano 

variety olives 
I (Orla-Jensen) Bergey et al., 

1934, ATCC 
L. brevis ATCC 14869 type human faeces III Orla-Jensen, 1919, ATCC 
E. coli 107/86 edema disease strain  IV Bertschinger et al., 1990 
E. coli HB101 host for pIH120 vector IV Boyer and Roulland-

Dussoix, 1969 
    
Plasmids    
pIH120 F18 fimbriae expression vector IV Imbrecht et al., 1996 
pMAL-p2 expression vector for MBP 

fusions 
IV New England Biolabs 

pKTH2095 LAB cloning vector III Savijoki et al., 1997 
    
Cell line    
Intestine 407 cell line  Adhesion test I Henle and Deinhardt, 1957, 

ATCC 
ATCC, American Type Culture Collection 
DSMZ, Deutsche Sammlung von Microorganismen und Zellkulturen 
LMG, Belgian Co-ordinated Collections of Microorganisms 
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Table 3. Methods used in this study. 

Method Described and used 
in 

  
Morphology and phenotypical tests  I, II 
DNA methods and transformation  

Isolation of chromosal DNA I, II, III, IV 
Polymerase chain reaction (PCR)  I, II, III, IV 
Real-time quantitative PCR  III 
Vectorette system III 
Dot blot hybridization I 
Southern blotting and hybridizatiton III 
DNA sequencing and sequence analyses I,II,III,IV 
Ribotyping II 
DNA-DNA reassociation II 
PCR-ELISA I 
Transformation of L. brevis  III 
Transformation of E. coli IV 

RNA methods and RT-PCR  
RNA isolation III 
RNA gel electrophoresis and Northern blotting III 
Primer extension studies and RT-PCR III 

Adhesion assays  
In vitro adhesion to porcine epithelial cells I, IV 
Bacterial adherence to a cell line I 
Bacterial adherence to the extracellular matrix (ECM) I 

Immunological methods  
Indirect immunofluorescence (IFA) IV 

Protein and enzyme assays  
SDS-PAGE I, III, IV 
Immunoblot analyses III 
Peptide sequencing and mass mapping III, IV 
Aminopeptidase activity assays III 

Extraction of S-layer proteins I 
Electron microscopy III 
Affinity chromatography IV 
Production of antisera III, IV 
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5. RESULTS AND DISCUSSION 

 
5.1. Isolation and identification of porcine-specific 

S-layer carrying Lactobacillus strains (I) 

Lactobacillus strains, carrying a putative S-layer or an L. brevis slpA homolog, were 

isolated from the intestine and faeces of pigs using biochemical and genetic screening 

for later use as vaccine vectors and/or probiotics for pigs.  

In total 99 strains, putatively belonging to the genus Lactobacillus, were isolated from 

the small intestine (duodenum, jejunum and ileum) of four newly slaughtered pigs and 

two sow’s faeces as pure culture. The identification at the genus level was made in this 

study by using a PCR-ELISA assay developed and verified earlier for the analysis of the 

genus Lactobacillus (Laitinen et al., 2002). SDS-PAGE and a gene probe specific for the 

L. brevis ATCC 8287 S-layer protein gene (slpA) were used to screen for the presence 

of strains possessing putative surface-layer proteins (Slps).  

The identification, based on phenotyping and 16S rRNA sequences, revealed that the 

eight S-layer protein producing strains were closely related to L. amylovorus and 

L. crispatus. The presence of a putative S-layer on the bacterial cell surface can be 

deduced from the incidence of a dominant band in the protein profile of non-lysed 

bacteria. In this study, dominant protein bands of 45-62 kDa were present in 8 of 99 

strains (Fig. 1 in I), suggesting the presence of S-layer proteins in these strains. After 

16S rRNA based species identification, the presence of genes encoding Slps could be 

confirmed by PCR. The PCR products were partially sequenced to reveal homology in 

the conserved C-terminal domain encoding part in this type of S-layer genes. 

A sequence analysis of a conserved C-terminal fragment indicated that all SDS-PAGE 

positive strains contain genes homologous to the slp genes of related Lactobacillus 

strains. 

To test whether the genomes of the 99 isolates shared DNA identity with the slp gene of 

L. brevis ATCC 8287, chromosomal DNA was isolated from the strains followed by 
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hybridization with an slpA probe. Only one of the isolates gave a positive hybridization 

signal, but no L. brevis –like strains could be isolated. The only strain found, with no 

apparent S-layer protein, was identified as L. mucosae, which is not phylogenetically 

related to L. brevis. It is likely that the observed homology is not linked to a silent slp 

gene but rather to conserved cell wall binding domains of wall-associated proteins. 

 

5.2. Adhesion properties of Slps of lactobacilli to different host 
tissues (I) 

In this study, the ability of putative S-layer-expressing strains to adhere to pig and 

human intestinal cells was tested. We found that the putative S-layer-protein-expressing 

cells of porcine isolates adhered very efficiently to pig enterocytes. Adhesive strains 

were attached on the epithelial cells, whereas non-adhesive strains had a uniform 

distribution around the cells. It was noteworthy that some porcine isolates also adhered 

to human cells with a high affinity, indicating that the adhesiveness of lactobacilli is not 

strictly host-specific. 

ECM proteins have also been used as a model of damaged intestinal mucosa. To 

investigate the role of the putative S-layer in the ECM binding, adhesion of S-layer-

expressing and S-layer-depleted bacteria to human fibronectin, human laminin, and 

mouse type IV collagen were also examined. Strong adhesion to fibronectin was 

observed in the presence of the S-layer proteins in L. brevis ATCC 8287 and six out of 

the eight studied porcine Lactobacillus isolates, whereas the removal of the intact Slps 

from the bacterial surface by extraction with guanide hydrochloride (GHCl) abolished the 

adhesiveness of these bacteria. Adhesion to laminin was observed in seven S-layer 

carrying lactobacilli strains. Interestingly, the adhesiveness to laminin increased in three 

strains after abolishment of the S-layer structure. With exception of one strain, no 

adherence to type IV collagen was observed irrespective of the GHCl treatment. In the 

exceptional strain, collagen binding was also independent of the GHCl treatment, 

indicating that the adhesion was not mediated by the putative S-layer. The strain 
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showing no presence of S-layer subunits but hybridising with L. brevis slpA, did not 

exhibit any detectable adhesiveness in the binding tests performed. 

Extraction with GHCl, as used in this study, is a routine procedure to remove S-layer 

proteins and did not cause detectable lysis of the cells (Sara, 2001). However, it is 

obvious that some other cell wall proteins or components, critical to binding activity, may 

be at the same time removed. Thus, it is clear that surface structures other than the 

S-layer protein mediate adhesion in such strains, e.g. lipoteichoic acids have been 

shown to contribute to the adhesion process (Antikainen et al., 2002). The poor 

adhesiveness of S-layer-depleted strains to fibronectin and laminin is, however, in 

accordance with the observation that S-layer subunits indeed are adhesion proteins and 

one of the key adhesion factors of the cell. 

 

5.3. Polyphasic taxonomic studies of Lactobacillus strains (II)  

While studying the taxonomy of six Lactobacillus isolates from porcine intestine and 

faeces, the taxonomy position of Lactobacillus sobrius type strain DSM 16698T and AD5 

strain based on comparative 16S rRNA sequence analysis was found controversial, as 

they showed a high similarity to the Lactobacillus amylovorus species. Therefore, the 

taxonomy of these species was addressed in a polyphasic taxonomy study that 

including, in addition to re-evaluating the 16S rRNA gene sequence and DNA-DNA 

reassociation results (Supplementary Table S1 in II), multilocus sequence analysis 

(MLSA) of housekeeping genes encoding the phenylalanyl-tRNA synthase alpha subunit 

(pheS) and RNA polymerase alpha subunit (rpoA) (Fig. 1 and Supplementary Figs. S2 to 

S4 in II) as well as numerical analysis of HindIII and EcoRI ribotypes (Supplementary 

Fig. S5 in II). The results obtained indicated that DSM 16698T, AD5 and the related 

porcine lactobacilli strains constitute a single species, L. amylovorus, and that the name 

L. sobrius is a later synonym of L. amylovorus. 

The classification of L. sobrius (Konstantinov et al., 2006) was based on DNA-DNA 

hybridization values, 16S rRNA gene sequence similarity, the ability to ferment 
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D-raffinose and FOS and to grow at 45°C. In our study, DNA-DNA hybridization values 

unambiguously indicated that all the studied strains belong to L. amylovorus. This 

species-level conclusion could be supported by numerical analysis of ribotypes, 

sequence comparison of two housekeeping genes (pheS and rpoA) and also by 

16S rRNA gene sequence analysis. The 16S rRNA gene sequence published in the 

previous study (Konstantinov et al., 2006), distuinguishing the two species of L. sobrius 

and L. amylovorus, was revised later by Konstantinov et al. (2006). The revised 

sequence possesses much higher similarity with corresponding sequence of the 

L. amylovorus type strain (99.9%). 

 

5.4. Characterization of the genes encoding the S-layer protein of 
L. brevis ATCC 14869 (III)  

L. brevis strains ATCC 8287 and ATCC 14869, originating from plant and human faeces, 

respectively, show differences in their ability to bind epithelial cells (M. Jakava-Viljanen 

and A. Palva, unpublished results). Our adhesion studies indicate that the neotype strain 

of L. brevis, ATCC 14869, binds more strongly to human enterocytes in vitro than 

L. brevis ATCC 8287, and even the binding of ATCC 14869 to pig intestinal epithelial 

cells was found. To resolve the basis of these differences and to reveal whether the 

L. brevis S-layer proteins have structural similarity in their epithelial cell binding domains, 

the S-layer protein gene content and the slp gene expression in ATCC 14869 were 

characterized in detail in study III. 

 

5.4.1. The S-layer protein profile 

During the study, L. brevis ATCC 14869 cells were observed to form two colony types 

on MRS plates when growing under aerobic conditions for longer periods (Fig. 1 in III), 

whereas under anaerobic conditions only S-type colonies were formed.  
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This phenomenon has not earlier been described for this L. brevis neotype strain. 

Identical 16S ribosomal DNA (rDNA) sequences with L. brevis identity from the cells of 

both colony types excluded the possibility of strain contamination. In association with the 

morphological change of colonies, a switch of the slp gene type expressed was also 

observed. Two putative S-layer protein bands of 50 and 43 kDa were detected by whole-

cell SDS-PAGE analyses from R-colony type cells reproduced on MRS plates and cells 

grown under aeration in MRS broth. The 50 kDa band was predominant in cells of the 

S-colony type and in cells grown anaerobically in MRS broth. Electron microscopy (EM) 

analysis revealed the presence of only a single S-layer with an oblique structure on top 

of the peptidoglycan layer on the cells of both colony types (Fig. 3 in III). Thus, the EM 

data do not explain the difference in the colony morphology but suggest that the S-layer 

structures are not directly involved. 

 

5.4.2. Sequence analysis of the slp genes 

PCR oligonucleotides were designed according to the N-terminal amino acid sequences 

from the purified 50 and 43 kDa S-layer proteins and their tryptic peptides and the PCR 

products obtained were sequenced and used as probes in Southern hybridizations with 

different restriction enzyme digestions. Based on the blotting data obtained, HindIII-cut 

chromosomal DNA was ligated with the HindIII Vectorette units, and PCR primers 

specific for the isolated gene and the Vectorette system were used to amplify and 

sequence the slp gene regions. 

In the amino acid sequence predicted from the orf expected to encode the 50-kDa 

S-layer protein, the amino acid sequences of the intact N-terminus and tryptic peptides 

of this protein could be found, and the associated gene was designated slpB. The slpB 

gene was found to consist of 1449 nucleotides and to have the capacity to encode 

a polypeptide of 483 aa with a signal sequence of 30 aa. The molecular weight of the 

mature SlpB (48 kDa) was found to be in good agreement with the molecular mass of 

the 50 kDa protein estimated by SDS-PAGE. Sequence analysis of the slpB revealed 
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the presence of two putative promoter regions, a possible RBS and a putative rho-

independent type transcription terminator sequence.  

Downstream of the slpB sequence, another putative slp gene was found and designated 

slpC. The slpC gene, separated from slpB by 347 nucleotids, was found to consist of 

1383 nucleotides with a capacity to encode a polypeptide of 461 aa. A predicted signal 

sequence of 30 aa was identified from the deduced slpC encoded polypeptide, SlpC, 

indicating that the slpC gene has a coding capacity for a mature protein of 46 kDa. 

Sequence analysis revealed the presence of two putative -10 regions for a promoter and 

a possible RBS, but the gene was not followed by transcription terminator-like 

sequences. 

Because the predicted DNA sequence and coding capacity of the slpC did not 

correspond to the N-terminal sequence and size of the 43 kDa protein S-layer protein 

from R-colony type cells, primers were designed for the isolation of the third gene, slpD, 

from the Vectorette library.  

The orf of the slpD gene was shown to consist of 1239 nucleotides and to encode 

a polypeptide of 413 aa with a signal sequence of 30 aa. The molecular weight of the 

mature SlpD (42 kDa) was found to be in good agreement with the molecular mass of 

the 43-kDa protein estimated by SDS-PAGE. Two putative -10 regions for a promoter 

and a possible RBS were identified from the upstream region of slpD and downstream of 

the stop codon a putative terminator sequence could be recognized. Southern blotting 

and PCR analysis revealed that the slpD gene is not closely linked to the slpB-slpC gene 

region.  

Several lactobacilli possess multiple S-layer protein genes, which can be differentially or 

simultaneously expressed. The genetic organization of the three L. brevis ATCC 14869 

slp genes is distinct from that described so far for other lactobacilli (Vidgrén et al., 1992; 

Boot et al., 1993; Callegari et al., 1998; Sillanpää et al., 2000; Altermann et al., 2005; 

Hagen et al., 2005). In L. brevis, two out of the three S-layer protein genes, slpB and 

slpC, are located adjacent to each other in parallel orientation whereas the third gene, 
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slpD, is not closely linked to the slpB–slpC gene region. The slpC gene was shown to be 

silent under the growth conditions tested. From L. brevis ATCC 8287, only one S-layer 

protein gene has been found, slpA (Vidgrén et al., 1992; Palva et al., unpublished 

results). In L. acidophilus ATCC 4356, the two S-layer protein genes, slpA and slpB, are 

in opposite orientation to each other and interspaced with a 3 kb DNA-region (Boot et 

al., 1996). The spacing and orientation of the L. crispatus S-layer protein genes, cbsA 

and cbsB, have not yet been deduced (Sillanpää et al., 2000). Based on the current data 

on the genetic organization of the Lactobacillus S-layer protein genes, they thus 

generally seem to be located in a rather close proximity to each other.  

Despite the high similarity of the amino acid composition of all known S-layer proteins, 

the overall sequence similarity is, however, surprisingly small even between the 

Lactobacillus S-layer proteins. Homology comparisons of the L. brevis Slp proteins 

revealed that the intraspecies identity was mainly restricted to the N-terminal regions of 

these proteins, whereas the C-terminal regions were rather divergent. By pairwise 

protein sequence alignments computed to the L. brevis Slp proteins a few middle and 

C-terminal regions with considerable sequence similarity have, however, been found 

between the SlpB and SlpD proteins (Åvall-Jääskeläinen and Palva, 2005). The amino 

acid sequence identities of the L. brevis ATCC 14869 Slp proteins to the SlpA protein of 

L. brevis ATCC 8287 were lower than expected and negligible compared to other 

S-layer proteins of the Lactobacillus species studied. Due to the dissimilarity between 

the S-layer proteins of the two studied L. brevis strains and also due to the dissimilarity 

between the ATCC 14869 Slp and other lactobacillar S-layer proteins, the location of the 

putative receptor-binding domain and the cell wall binding domain of the ATCC 14869 

Slp protein/s cannot be directly determined. On the other hand, sequence alignments 

between the S-layer proteins of L. crispatus and L. acidophilus and L. helveticus have 

shown that the C-terminal sequences between the S-layer proteins of these lactobacilli 

are highly similar (Åvall-Jääskeläinen and Palva, 2005) and contain a putative 

carbohydrate-binding consensus sequence, suggested to be involved in cell wall binding 

(Smit et al., 2001). For the S-layer proteins of L. brevis ATCC 14869 the adhesin 

function and location of the adhesion domain needs to be experimentally confirmed. 
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5.4.3. Expression studies on the slp genes 

The expression of the slp genes of L. brevis ATCC 14869 was studied as a function of 

growth. Northern blot analyses were performed to investigate expression of all the three 

L. brevis ATCC 14869 slp genes under aerated and anaerobic growth conditions. Under 

both conditions, the slpB-specific probe detected an approximately 2.0-kb transcript, 

confirming the monocistronic nature of slpB transcripts. The slpD-specific probe 

detected an approximately 1.9-kb transcript only from total RNA isolated from cells 

grown under aerated conditions. The size of slpD transcripts indicated that the slpD gene 

is also monocistronic. With primer extension analysis, a transcription start site of the 

slpD gene could also be localized. Under aerated growth conditions, both slpB and slpD 

were found to be expressed, whereas under anaerobic growth conditions only 

expression of slpB was detected. Under the growth conditions tested, slpC was found to 

be a silent gene.  

The phase variation mechanisms of S-layer proteins described so far are essentially 

based on DNA rearrangements (Åvall-Jääskeläinen and Palva, 2005). To study whether 

the activation of slpD gene expression takes place by chromosomal rearrangement, a 

real-time quantitative PCR analysis was performed with primers spanning the slpD 

promoter region and with chromosomal DNA from ATCC 14869 cells grown under 

aerated or anaerobic conditions. The result indicated that chromosomal rearrangements 

are not likely to be involved in the regulation of the L. brevis slpD gene expression. 

In accordance with Northern data, expression studies with a PepI reporter protein under 

the control of the slpD promoter showed that under aerated conditions the specific PepI 

activities were growth stage dependent. Under anaerobic conditions no similar response 

was observed and the specific PepI activities remained low. 

The results obtained in this study indicated that the variation in S-layer protein content in 

L. brevis ATCC 14869 occurs at the transcriptional level rather than with DNA 

rearrangements. The Northern analyses indicated that slp gene expression is regulated 

at the transcriptional level. This was also confirmed by expressing reporter protein PepI 
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under the control of the slpD promoter. Furthermore, we showed by quantitative real-

time PCR analysis of the chromosomal DNA from cells grown under aerated or 

anaerobic conditions that there are no conformational changes in the known promoter 

region of slpD. When SlpD is produced, the amount of SlpB is lowered and the level of 

slpB transcripts is also somewhat decreased. It suggests that the variation in the S-layer 

protein content takes place by a unique mechanism involving activation of slpD 

transcription in the exponential growth phase by a soluble factor as a result of an 

environmental change. How this response is triggered, and what all the participating 

components are remains to be elucidated. It is also unclear whether the variation in the 

colony forms and slp gene expression are connected by the same regulon or whether 

they are independent events. Furthermore, it cannot yet be predicted whether the 

change in redox potential or amount of dissolved oxygen has a direct effect on the 

induction of slpD expression or whether some other changes in environmental factors 

under these conditions affect the control of slpD transcription. Most likely, a stress-

related cascade of events may be involved. 

 

5.5. Characterization of the adhesin of E. coli F18 fimbriae (IV)  

F18 fimbriae of E.coli mediate bacterial adherence to the microvillus of porcine intestinal 

epithelial cells. A protein known as adhesin is responsible for this specific binding. 

A previous study suggests that the adhesin molecule of F18 fimbriae is either FedE or 

FedF (Imberechts et al., 1996). In this study, the unknown region of the E. coli fed gene 

cluster was sequenced and the adhesion of F18 fimbrial strain (ERF2055) to isolated 

porcine epithelial cells in vitro was confirmed. Furthermore, purified FedF and FedE as 

fusion proteins with maltose binding protein (MBP) were used for raising antisera for 

adhesion studies. In addition, using indirect immunofluorescence microscopy and 

adhesion inhibition tests, the FedF protein as the adhesin of F18 fimbriae was 

confirmed. 
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5.5.1. Sequencing of the fed gene cluster 

F18 fimbriae were purified from E. coli F107/86 (Bertschinger et al., 1990). The genes 

involved in the biosynthesis of F18 fimbriae were revealed from plasmid pIH120, which 

was constructed by Imbrechts et al. (1992). The entire fed gene cluster was sequenced 

from plasmid pIH120 in study IV, completing the missing sequence data of the fed gene 

cluster. Two unknown open reading frames (ORF), designated fedB and fedC 

(accession no. AF222806), were found between fedA and fedE. On the basis of the 

homology alignment analyses performed, FedB is suggested to be the usher and FedC 

the chaperone of the F18 fimbria. 

 

5.5.2. Adhesion studies 

The adhesion of a reconstructed F18 fimbrial strain (ERF2055) to isolated porcine 

jejunal and ileal epithelial cells in vitro was confirmed, and the attachment of the F18 

fimbrial E. coli strain was found to be mediated by FedF protein. Epithelial cells were 

isolated from the small intestine (jejunum and ileuml) of an 8-week old piglet and 

microscopic examination of the adherence of F18+ E. coli (ERF2055) to the microvilli of 

the epithelial cells was performed. To obtain a semi-quantitative estimation of the level 

of adhesion, the number of bacteria adhering to 15 randomly chosen epithelial cells was 

counted. The average numbers of ERF2055 bacteria adhering per jejunal or ileal cell 

when the bacteria were preincubated with different antisera, which had been raised in 

rabbits or mice and diluted in phosphate-buffered saline, are listed in Table 1 in IV. 

Representative pictures are also shown for each adhesion analysis in Fig. 3 and Fig. 4 in 

IV. Abolishment of the adhesion potential of ERF2055 cells was observed after 

preincubation of ERF2055 cells with MBF-FedF-specific antibodies or antibodies 

directed against the entire F18 fimbria. In contrast, antibodies to MBP-FedC were not 

able to inhibit the adhesion of ERF2055 cells, even though a minor decrease in 

adhesion capability was found (Table 1 in IV). These results confirmed that from the 

antisera directed against FedF subunit, only MBP-FedF antibodies were able to 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD6-4KVP1B6-1&_user=2391153&_coverDate=01%2F31%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000057163&_version=1&_urlVersion=0&_userid=2391153&md5=6de7e8772c5e74802fcdfe6b9458786e#bib1#bib1
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efficiently inhibit the adherence of the F18 fimbriae-expressing strain (ERF2055). As 

expected, a reduction in the adhesion capability of ERF2055 cells, reincubated with 

antibodies raised against whole F18 fimbriae could also be demonstrated. 

A second adhesion study was set up with purified proteins to determine whether the 

MBP-FedF fusion protein could adhere to isolated porcine epithelial cells when produced 

without its chaperone (FedC). In addition, MBP-FedE and MBP were also tested for 

adherence as negative controls. The attchment of purified fusion proteins was detected 

with fluorescent microscopy after incubation with rabbit anti-MBP antiserum and FITC-

labelled anti-rabbit antibodies. The epithelial cells incubated in the presence of 

MBP-FedF exhibited bright fluorescence (Fig. 5A in IV), whereas epithelial cells 

incubated with equal amounts of MBP-FedE (Fig. 5C in IV) or MBP (data not shown) 

showed no fuorescence. This strongly suggested that the FedF protein represents the 

adhesin of the fed gene cluster encoding the F18 fimbria and also indicated that the 

FedF produced as a fusion protein with MBP without its chaperone retained its capacity 

to bind to epithelial cells. 
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6. CONCLUSIONS AND FURTHER ASPECTS 

Slps of lactobacilli have been shown to confer tissue adherence. In order to find the 

potential porcine-specific S-layer carrying strains for later use as vaccine vectors and/or 

probiotics in pigs, in total 99 strains, putatively belonging to the genus Lactobacillus, 

were isolated as pure cultures and the adhesiveness of the putative S-layer-expressing 

lactobacilli to intestinal tissues was investigated. From the all isolates tested, only 8% of 

the strains produced S-layer proteins. It is likely that the amount of S-layer carrying 

porcine lactobacilli is relatively low. Their taxonomic identification, based on polyphasic 

taxonomy study, revealed that the eight S-layer protein-producing strains belonged to 

the species L. amylovorus and L. crispatus. In addition, L. sobrius strains DSM 16698T 

and AD5 were found to belong to the species L. amylovorus. Thus, L. sobrius is a later 

synonym of L. amylovorus. No L. acidophilus and L. brevis, known to exhibit an S-layer 

structure and shown to be one of the dominant Lactobacillus species in pigs in earlier 

studies, were found in this study. Our result suggests that either L. amylovorus is the 

dominant S-layer carrying Lactobacillus in pigs or alternatively this finding may reflect 

the effect of feeding constituents on the enrichment of a certain Lactobacillus species. 

We found that the SDS-extractable protein profile, the size of the S-layer protein and 

binding capability of the strains varied greatly, even among the isolates belonging to the 

same Lactobacillus species. PCR isolation of S-layer protein genes suggests the 

presence of more than one slp gene, at least in some of the strains. Removal of the 

intact Slps from the bacterial surface by extraction with GHCl reduced the adhesion of 

some strains to fibronectin and laminin. This is in accordance with the observation that 

S-layer subunits indeed are adhesion proteins and one of the key adhesion factors of 

the cell. 

Our adhesion studies indicated that the neotype strain of L. brevis, ATCC 14869, 

adheres strongly to human and pig intestinal epithelial cells in vitro. To study whether 

the S-layer protein of ATCC 14869, like that of L. brevis ATCC 8287 characterized 

earlier, mediates adhesion and whether the L. brevis S-layer proteins have structural 

similarity in their epithelial binding domains, we characterized two new S-proteins and 
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three new slp genes. The proteins have distinct differerences when compared to the 

S-layer proteins from L. brevis ATCC 8287 and other lactobacilli previously described. 

Under different growth conditions, L. brevis strain 14869 was found to form two colony 

types, smooth (S) and rough (R), and to express the S-layer proteins differently, 

a phenomenon not earlier described. Most likely to adapt to different stress factors 

caused by drastic changes in the environmental conditions, the bacteria may express 

alternative S-protein genes.  

In the infection process, F18 fimbriae of E. coli mediate bacterial adherence to the the 

microvillus of porcine intestinal epithelial cells. In this study, the adhesin of E. coli F18 

fimbriae was established to be FedF. Moreover, specific adhesion to enterocytes was 

shown with purified FedF-maltose binding protein. Therefore, oral immunization of 

piglets with recombinant FedF could be considered. The S-layer could provide 

a superior expression level and surface density of the required FedF antigen. In cases 

where an antigen providing the binding function to the epithelium, like the E. coli F18 

receptor-binding domain, the role of binding provided by the S-layer carrier molecule 

may be of less importance. With an antigen having no binding capacity, the role of the 

S-layer binding property to the epithelium may also become important, for example, in 

the prevention of colonization of the invading pathogen by competitive exclusion, in 

addition to eliciting antibody responses against the pathogen.  

This study is part of a larger project aimed at developing live oral LAB vaccines. 

Vaccination with live recombinant bacteria, producing certain antigens, is an attractive 

alternative to the traditional vaccination methods. The advantages in employing LAB as 

vaccine vectors include the claimed health-promoting properties (Vaughan et al., 1999) 

and the intrinsic adjuvant activities (Seegers, 2002) possessed by several strains of 

LAB, the GRAS status of LAB (Adams and Marteau, 1995) as well as the lack of 

lipopolysaccharides in the cell wall of LAB, eliminating the risk of endotoxic shock 

(Mercenier et al., 2000). LAB strains carrying adhesion molecules from pathogens on 

the surface may, in addition to eliciting local and humoral immune responses against the 

pathogen, also hinder colonization of the invading bacteria by competitive exclusion. 
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F18 fimbrial E. coli strains cause PWD and ED in pigs that often are fatal to weaned pigs 

and are responsible for considerable economic losses in the pig breeding industry 

(Verdonck et al., 2002). So far, commercial vaccines against infections caused by the 

F18 fimbriae carrying E. coli strains are lacking. The practice of preventing ED and PWD 

by administering antimicrobials or feed additives no longer meets the criteria for rational 

use of antibiotics in production animals due to the development of drug resistance and 

harmful residues in meat. A need therefore exists to develop alternative treatments for 

such diseases. Vaccination with live recombinant bacteria, producing specific antigens, 

is an attractive alternative to the traditional vaccination methods and could be utilized in 

the prevention of infections caused by F18+ E. coli.  

The receptor binding domain of the FedF adhesin of E. coli strains carrying F18 fimbriae 

has been chosen as the first target antigen to be expressed in L. brevis in our laboratory. 

By surface displaying epitopes or antigens as part of an S-layer, up to 5 x 105 epitope 

monomers can be obtained to surround a single Lactobacillus cell, making such 

lactobacilli very attractive candidates for mucosal vaccine delivery vectors. Immunization 

studies with Lactobacillus S-layer antigen constructs are still lacking, but the results of 

the few immunization studies utilizing recombinant S-layer proteins of other bacteria 

(Umelo-Njakka et al., 2001, Riedmann et al., 2003) further encourage the development 

of Lactobacillus S-layer based antigen carriers. 
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