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ABSTRACT  
 

Salmonellosis is one of the most significant zoonoses worldwide and also in Finland. The major 

serovars causing infections in humans are Salmonella Enteritidis and Salmonella Typhimurium. 

Salmonella Typhimurium definitive phage type (DT) 1 and Salmonella Infantis are considered 

endemic in Finland. These serovars have frequently caused outbreaks among humans, the source 

of which is often detected. For the sporadic cases they usually remain unknown. Salmonella 

Agona was not frequently encountered in Finland until a small outbreak among cattle farms 

occurred in 1994-1995. S. Agona became the third most common Salmonella serovar in cattle in 

Finland in 1995. The two more common serovars were S. Infantis and S. Typhimurium DT1. 

 

Bacterial typing methods are used for outbreak investigations and for surveillance, where the data 

can be used for risk assessment calculations in addition to the future prevention of outbreaks. In 

particular the identification of factors that contribute to the persistence and spread of infection in 

endemic situations, estimations of the effect of animal reservoirs on human cases, and the 

identification of other risk factors for human infections are among the important reasons for typing. 

 

Salmonella Infantis became more common in cattle in the 1980s, after it spread in the broiler 

chicken production in Finland in 1971. Subsequently it caused outbreaks among broilers and 

humans in the 1970s and 1980s. In the 1990s, S. Infantis became the predominant serovar among 

cattle in Finland. In 1995, a feedborne outbreak of S. Infantis in cattle occurred. We were able to 

identify the feedstuff-related genotype by XbaI-PFGE methodology. It belonged to the major 

endemic type, pf1, but differed from it by having a plasmid visible as an intensive band of 60 kb in 

XbaI-PFGE (plasmid subtype pf1/39). Farms infected with the feedstuff-related genotype pf1/39 or 

the related genotypes pf1/43, pf1/44, pf1/45, or pf1/46 containing the same 60 kb plasmid were 

also identified. The stability of the feedstuff-related genotype was followed on selected farms. The 

plasmid was stable on the farms during the follow-up period. The feedstuff-related genotype did 

not persist in the cattle population. Moreover, there was a general decline in bovine salmonella 

infections from 1997 onwards. 

 

The genetic diversity of the S. Infantis isolates taken from Finnish cattle was also assessed: the S. 

Infantis infection in cattle was highly clonal as 99 per cent of the isolates had XbaI-PFGE profiles 

clonally related to each other. The major genotype pf1 was predominant both at the starting year of 

our analysis in 1985 and as the infection seemed to fade out in 2003. Traditionally, only one isolate 

per farm is stored in the national collection. However, an infection may have existed subclinically 

for a long time in a herd until the first Salmonella isolates were obtained. In our analysis of 

successive isolates from the same herds, we frequently detected minor changes in banding 
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patterns during long-lasting infections in individual herds. The sampling and testing of several 

isolates from a herd in outbreak investigations is therefore advisable. There is a trend towards less 

genetic diversity of the S. Infantis infection among domestic isolates from humans and poultry. Up 

to eight different ribo/IS200-types were detected in the 1980s isolates, whereas in the 1990s only 

two different ribo/IS200-types (1A, 1B) were seen. In cattle, 89 per cent of the analysed isolates 

possessed the ribo/IS200-type 1A, although four different ribo/IS200-types were recorded in the 

1980s isolates, and two ribo/IS200-types in the 2000s isolates. The ribo/IS200-types and the most 

common XbaI-PFGE profiles determined amongst the analysed cattle isolates could also be 

detected among domestic isolates from poultry and humans. 

 

After the outbreak in cattle in the years 1994-1995, isolates of S. Agona taken from the 1984 to 

1999 period were characterized by PFGE using XbaI, BlnI, SpeI, and NotI enzymes. Two outbreak-

related genotypes, which were not detected in the earlier isolates of S. Agona, were identified. 

Another small possibly genetically related outbreak among cattle farms occurred in 1997. In 1999, 

a large outbreak of S. Agona of domestic origin involving more than 50 human cases occurred. 

Despite epidemiological investigations carried out by the local authorities, the source of the 

outbreak remained unknown. Based on our typing data, this outbreak was unrelated to the cattle 

farm outbreaks, though it did occur in the same region of Finland. The outbreak profile for the 1999 

outbreak could not be found in any of the other isolates. As no recent foreign isolates were 

available, a foreign source of the human infection cannot be disregarded. 

 

Salmonella Typhimurium DT1 has become the most common S. Typhimurium phage type among 

cattle farms in Finland, and has been detected annually since 1980. Domestic and foreign isolates 

of S. Typhimurium DT1 from 1981 to 1999 were characterised. Furthermore, two clusters formed 

by the effects of the combination of the XbaI-, BlnI-, and SpeI-PFGE profiles, IS200-profiles and 

possession of the serovar-specific virulence plasmid were analysed. The major cluster had no 

virulence plasmid and included the most common XbaI-PFGE profile 10 and IS200-profile D, 

typical of our endemic infection. The results of XbaI-, BlnI-, and SpeI-PFGE gave 54 different 

combination profiles, which can be applied in the analysis of outbreaks. In contrast, molecular 

subtyping by XbaI-PFGE alone is not discriminatory enough in analysing our endemic infection. 

The source of sporadic human infections is unknown in most cases, and molecular typing did not 

reveal any clear infection source. The most common XbaI-PFGE profile 10 was also seen in 

hedgehogs and wild birds. They might act as important reservoirs, maintaining a minimum baseline 

level of S. Typhimurium DT1 in the environment and consequently be possible sources of human 

infections. 
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1. INTRODUCTION 

 
Zoonoses are infections that can spread from vertebrate animals to man. The most important 

zoonoses in the EU by far are campylobacteriosis and salmonellosis. Salmonellosis is also one of 

the most significant zoonoses in Finland. It is estimated that about 60 to 80 per cent of the reported 

cases in humans are of foreign origin. The most common Salmonella enterica subsp. enterica 

serovars of domestic origin being S. Infantis and S. Typhimurium definitive phage type (DT) 1. Both 

are considered endemic in Finland. 

 

Salmonella Infantis is the predominant serovar in production animals in Finland. Before the 

introduction of S. Infantis into the broiler chicken production in Finland in 1971, only sporadic 

isolations of S. Infantis among animals, animal-feed and humans were made. S. Infantis became 

more common among cattle in the country in the 1980s, and in the 1990s it became the 

predominant Salmonella serovar. In 1995, a feedstuff-related outbreak occurred among cattle 

farms. 

 

Salmonella Typhimurium DT1 spread to broiler farms in Finland in 1983, and sporadic isolations in 

broilers have been made since. DT1 has become the most common S. Typhimurium phage type 

among cattle farms, and has been isolated every year since 1980. Annually, DT1 also causes 

outbreaks among humans. 

  

Salmonella Agona was not frequently encountered in Finland until an increase in the number of 

isolations found in animals and feed in 1994. A small outbreak of S. Agona involving eight cattle 

farms was seen in 1994-1995, and S. Agona was the third most common Salmonella serovar in 

cattle in Finland in 1995, after S. Infantis and S. Typhimurium. Usually more than 50 per cent of the 

serovar Agona isolates from humans are of foreign origin, but in 1999 a large outbreak in humans 

of domestic origin occurred. 

 

In addition to the conventional epidemiological surveys, bacterial typing methods provide the basis 

for investigations of outbreaks of human and animal salmonellosis today. Typing is also used for 

surveillance to obtain baseline information and to estimate the effect of animal reservoirs in human 

cases. Moreover, it is used to identify factors that contribute to the persistence and spread of 

infection in endemic situations, and to monitor critical points for cross-contamination in food 

production. 

 

The present study was undertaken to obtain molecular information on the endemic Salmonella 

serovars Infantis and Typhimurium DT1, in addition to the potentially emerging serovar Agona. We 
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wanted to see the long term genetic changes that can occur during a prolonged endemic infection 

such as S. Infantis, and to evaluate the stability of the molecular profile in individual herds during 

long-lasting infections. Two outbreak investigations were included in the study to show the 

usefulness and value of molecular typing in such situations as surveillance. The resulting data can 

be used for risk assessment for future prevention and investigation of outbreaks. Furthermore, the 

molecular protocols used can also be adapted for the analyses of other Salmonella serovars. 
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2. LITERATURE REVIEW 
 

2.1 The genus Salmonella 
 

The genus Salmonella is named after D. E. Salmon, an American bacteriologist and veterinarian, 

who, together with T. Smith isolated the "hog cholera bacillus" in 1885 (Salmon and Smith 1885). 

Salmonellae belong to the family Enterobacteriaceae, and are facultative anaerobic gram-negative 

straight rods of 0.7 - 1.5 x 2.0 - 5.0 μm in size and shape. They are usually motile, their motility 

being produced by peritrichate flagella. The colonies are generally 2 - 4 mm in diameter. 

Salmonellae reduce nitrates to nitrites and usually produce gas from glucose and hydrogen sulfide 

on triple-sugar iron agar. They are indole-negative, urease-negative and usually utilize citrate as a 

sole carbon source (Brenner 1984). Originally inclusion into the genus Salmonella was on the 

basis that organisms were related to one another antigenically. However, since these organisms 

have a large number of biochemical characters in common, more emphasis was put on their 

biochemical activity properties than their respective antigenic structure (Parker 1983). With the 

development of DNA-based methods, one can now study the genetic relationships in order to 

decide which organisms belong to the genus. 

 

The nomenclature within the genus was first based on biochemical reactions. Later DNA-

relationship studies provided the basis for renaming the subgenera. The genus Salmonella was 

divided by Kauffmann into four subgenera, I - IV (Kauffmann 1966b) on the basis of biochemical 

reactions. In 1970, Le Minor et al re-classified the subgenera as: subgenus I as ‘S. kauffmannii’, 

subgenus II ‘S. salamae’, subgenus III ‘S. arizonae’ and subgenus IV ‘S. houtenae’. Later, the four 

subgenera were shown by DNA-relationship studies to constitute a single DNA hybridization group 

with five subgroups, where subgenus III was split into DNA subgroups IIIa and IIIb. Le Minor et al 

later identified an additional subgroup (VI). A second DNA hybridization group (Bongor) was 

identified (Grimont et al 2000). In 1982, Le Minor et al considered all Salmonella serovars to 

constitute a single species, S. choleraesuis, which contained six subspecies (choleraesuis, 

salamae, arizonae, diarizonae, houtenae, bongori). Subspecies indica was added in 1986. The 

specific name of the species, S. choleraesuis, was also the name of a serovar. Therefore, in 1986 

Le Minor and Popoff proposed the new name of S. enterica, making the list of the subspecies: 

enterica, salamae, arizonae, diarizonae, houtenae, bongori, and indica (Grimont et al 2000).  

 

According to the guidelines issued in 1987 by Wayne et al, a genomic species is defined as having 

more than 70 per cent relatedness by DNA-DNA hybridisation with ΔTm values below 5°C. Using 

these criteria Reeves et al classified two species (S. enterica and S. bongori) and six subspecies 

of S. enterica (enterica, salamae, arizonae, diarizonae, houtenae, indica) within the genus 
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Salmonella in 1989. Therefore, the former S. typhimurium is now S. enterica subsp. enterica 

serovar Typhimurium, or Salmonella Typhimurium. Names (usually geographical) are only given to 

the serovars of S. enterica subsp. enterica (Grimont et al 2000) 

(www.bacterio.cict.fr/salmonellanom.html). 

 

The identification of Salmonella serotypes is based on three kinds of antigen (O, H and Vi) (The 

Kauffmann-White schema; White 1926, Kauffmann 1941, 1972). The specificity of the somatic (O) 

antigen, which is heat-stable, is determined by the structure and composition of the 

lipopolysaccharide of the cell wall. In contrast, the flagellar (H) antigens are heat-labile proteins, 

flagellins, which are encoded by two genes, fliC and fljA. These genes determine the antigens of 

phase 1 and phase 2 flagella: at any given time, either the monophasic (single) or diphasic (two 

separate) form is expressed (Gillespie and Timoney 1981; Grimont et al 2000).  

 

The surface (Vi) antigen is a capsular polysaccharide found in serovars Typhi, Paratyphi C and 

Dublin (Grimont et al 2000). Rough mutants have lost their agglutination capacity to homologous O 

antiserum.The smooth to rough variation in the O antigen occurs rarely in nature. However, it is 

common in strains maintained through many generations on ordinary laboratory media. The 

antigenic formula consists of three parts: the O antigens, the phase 1 H antigen and the phase 2 H 

antigen (Parker 1983). The different O antigens are designated by Arabic numbers, whereas the H 

antigens are assigned either with small letters (phase 1 antigens) or Arabic numbers or small 

letters (phase 2 antigens). In the antigenic formula, the O antigenic factors that are easily modified 

by mutation are indicated in brackets and those determined by bacteriophages or plasmids are 

underlined (Grimont et al 2000). The antigenic formulae for instance for S. enterica subsp. enterica 

serovars Agona, Infantis and Typhimurium are 1,4,[5],12;fgs;[1,2] and 6,7,14;r:1,5 and 

1,4,[5],12;i:1,2, respectively. 

 

By 2002, as many as 2541 serovars had been identified, 22 of which are in S. bongori. Of the 2519 

serovars within S. enterica, 1504 serovars corresponded to subspecies enterica, 502 to salamae, 

95 to arizonae, 333 to diarizonae, 72 to houtenae and 13 to indica (Popoff et al 2004) 

(www.sciencedirect.com; March 2007). 

 

The G + C content of the Salmonella DNA is 50 to 53 per cent (Brenner 1984). The complete 

genome sequence of Salmonella enterica serovar Typhimurium LT2 was published in October 

2001 (McClelland et al). The size of the sequenced chromosome was 4857 kilobase (kb). The 94 

kb virulence plasmid of S. Typhimurium strain LT2 was also sequenced. A highly invasive and 

resistant zoonotic pathogen, Salmonella enterica serovar Choleraesuis, was sequenced by Chiu et 

al (2005). For those Salmonella strains that have been sequenced so far, the size of the genome 
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varies between 4460 kb (S. bongori 12419 ATCC 43975) and 5091 kb (S. enterica Typhimurium 

SL1344 NCTC 13347) (www.sanger.ac.uk/Projects/Salmonella). The CBS Genome Atlas 

Database (Hallin and Ussery 2004) is a dynamic database for bioinformatic results and sequence 

data, including the 4857 kb genome of Salmonella Typhimurium LT2. 

 

Plasmids, which are composed of double-stranded circular DNA, are extrachromosomal elements 

that are often found in the cytoplasm of bacteria. The plasmids may contain antibiotic-resistance 

genes or virulence-factor genes, such as enterotoxins and adhesins. For instance, the serotype-

specific plasmids of Salmonellae possess salmonella plasmid virulence (spv) genes, responsible 

for virulence in the mouse (Gulig 1990). Plasmids encoding for unknown factors are referred to as 

cryptic (Tompkins 1992). 

 

2.2 Characteristics of bovine salmonella infections 

 

2.2.1 Clinical features 
 

The disease caused by Salmonellae is usually either systemic, or an acute enteritis. In the latter 

systemic disease is seen only in cases with decreased immune response (Barrow and Wallis 

2000). Animals are predisposed to clinical salmonellosis by several stress factors, such as 

parasitism, viral infections, parturition, poor sanitation, poor nutrition, overcrowding, and 

transportation. Calves that have not received adequate colostrum within the first 12 hours of life 

are more susceptible to infection (Gillespie and Timoney 1981). Young animals are also less able 

to cope with dehydration (Lax et al 1995). The pathogenicity of Salmonella is both serovar- and 

host-dependent (Barrow and Wallis 2000). Serovars such as Abortusovis and Pullorum/Gallinarum 

are adapted to sheep and poultry. Other serovars, such as Dublin and Choleraesuis, cause 

disease primarily in one animal species (cattle or pigs) but are opportunist pathogens of others 

(Lax et al 1995).  

 

Typical symptoms and signs in the acute phase of the infection are depression, anorexia, fever, 

weakness and diarrhoea, which may be blood-stained. Pregnant animals may abort. Death occurs 

most frequently within a week from the onset of clinical signs; in calves often within a day or two. 

The mortality, usually in the range of 5 to 10 per cent, may be as high as 75 per cent. In calves that 

survive, there may later be signs of joint infection (Gillespie and Timoney 1981; Wray and Davies 

2000). Animals can also be symptomless; they harbour the infection in their lymph nodes or tonsils 

without excreting the organism in their faeces, but during stress these latent carriers may become 

active carriers or even clinical cases per se (Wray and Davies 2000). After systemic infection, 

Salmonellae are occasionally excreted in the urine or in a purulent discharge (Parker 1983).  
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Salmonella Dublin primarily localizes in the placenta and causes abortion, often without any other 

symptoms or generalized salmonellosis (Lax et al 1995). If the calves of these active or latent 

carriers of S. Dublin survive, they may be congenitally infected and may infect contact animals or 

become carriers themselves. Some cattle in California are reported to have chronic S. Dublin 

infection of the udder, and may shed the organism both in their faeces and milk (Wray and Davies 

2000). Calves infected with S. Dublin often show respiratory signs, whereas the enteric form 

predominates for other serovars (Wray and Davies 2000). 

 

2.2.2 Infection routes and epidemiology on the farm 
 

The most important infection route in animals is the faecal-oral (Gillespie and Timoney 1981). 

Respiratory infection is also possible; Salmonella may be spread by aerosols with the use of 

pressure hoses when cleaning stalls (Lax et al 1995; Wray and Davies 2000). Contaminated milk 

may also cause infections. Occasionally cattle may excrete Salmonella in their milk, but more 

frequently the milk is contaminated by infected faeces during the milking process (Wray and 

Davies 2000). Newborn calves are exposed to Salmonella infection as the carrier cows shed the 

organism at parturition (Gillespie and Timoney 1981). To cause disease in healthy cattle, oral 

doses ranging from 106 to 1011 cells of S. Dublin and 104 to 1011 cells of S. Typhimurium are 

needed (Wray and Davies 2000). However, infection has been seen even after the ingestion of 

very small doses (less than 10 cells). These infections were associated with ingestion of chocolate 

in humans and a vegetable fat supplement in cattle (Kapperud et al 1990; Jones et al 1982). 

 

The transmission of infection from one farm to another is mainly achieved by the purchase of 

infected cattle (Wray and Davies 2000). Non-symptomatic ruminants shed the bacteria 

intermittently and therefore infection is difficult to detect (Edrington et al 2004). Some 

asymptomatic carriers continue to eliminate Salmonellae in their faeces for weeks, months or years 

after recovery from a clinical case: and by doing so these carriers contribute to the dissemination 

of salmonellosis (Brenner 1984). Latent carriers are important in the epidemiology and persistence 

of S. Dublin on farms, because this bacterium can survive in the environment for over a year 

(Gillespie and Timoney 1981; Wray and Davies 2000). Furthermore, S. Typhimurium has been 

shown to persist in calf rearing units for up to two years, despite cleaning and disinfection routinely 

carried out between batches (Wray and Davies 2000). Free-living animals, birds, and rodents may 

also introduce the infection onto the farm (Gillespie and Timoney 1981; Wray and Davies 2000). 

Cats, dogs, mice, rats, foxes and badgers have been shown to be infected with S. Typhimurium. 

Rats and mice that acquire S. Dublin infection do not play a major role in the spread of infection, 

but they might prolong the persistence of Salmonella on farms (Wray and Davies 2000).  
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Another important infection source for animals is contaminated feedstuffs (Gillespie and Timoney 

1981). Both formulated compound feeds and also vegetable proteins, such as soya, have been 

found to be contaminated with Salmonella (Aho et al 1996). Imported animal protein, such as 

fishmeal, and waste from the food industry, might also be contaminated (Wray and Davies 2000). 

Compound-feed mills may be contaminated by Salmonella present in the ingredients, and the 

presence of Salmonella in cooling systems and storage bins may lead to the subsequent 

contamination of products both during and after processing. To minimize the risk for contamination 

of stored feed, effective rodent and bird control is important. It has been shown that there is an 

increased risk of salmonellosis if the storage conditions on the farm are poor. For example, 

allowing wild birds and cats access to the feed stores (Wray and Davies 2000). In Finland, the 

Feedingstuff Act has been in force for over 40 years. The purpose of this act is to detect 

Salmonella in feedstuffs. The Finnish Food Safety Authority Evira (the former Plant Production 

Inspection Centre is also a part) continuously monitors the facilities of feed processors including 

feed materials, feed mixtures and additives used in feedingstuffs by sampling according to a 

protocol approved by the Ministry of Agriculture and Forestry. In order to minimize the spread of 

Salmonella from the manufacturing plants to farms, strict control of the raw material for feedstuffs 

has proved to be most efficient (Ministry of Agriculture and Forestry, Helsinki, Finland, 2000). 

 

In the disease control measures for reducing infection on cattle farms, the monitoring of the 

environment must be included as Salmonellae may survive for prolonged lengths of time in: certain 

feed, sewage, river and sea water (Murray 2000; Parker 1983). Pastures may be contaminated by 

polluted water whenever flooding occurs, therefore pastures should not be grazed for four to five 

weeks after flooding, and surface water should be fenced off. In cases of widespread 

environmental contamination, such as that in the large western dairy herds in the USA, it is difficult 

to determine the source of infection (Wray and Davies 2000). Moreover, when investigating 

disease outbreaks, one must keep in mind that the introduction of infection may sometimes 

precede the development of clinical disease by several months or years. 
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2.2.3 Salmonella in cattle in the EU and worldwide 
 

The major Salmonella serovars associated with bovine salmonellosis in the EU and elsewhere are 

serovars Dublin and Typhimurium. The true prevalence of salmonella in cattle in the EU is not 

known, as there is little systematic screening done. The sampling schemes and diagnostic 

methods vary between the Member States. The reporting has also been inconsistent for many 

Member States. Typically the reported data are from clinical salmonellosis outbreaks, so only the 

most common serovars are reported. For the year 2005, only five Member States of the EU 

(Estonia, Finland, Italy, Slovenia and Sweden), and also Norway reported data from active 

monitoring of cattle herds (European Commission 2004; The European Food Safety Authority, 

EFSA, 2005 and 2006). In 2005, very few, if any, Salmonella infected animals or herds were 

reported in Finland, Norway and Sweden, and less than 1 per cent of the analysed isolates were 

positive for Salmonella in Estonia and Slovenia. In Italy, of the batches of cattle that were 

investigated prior to slaughter, 6.7 per cent were positive for Salmonella (EFSA 2006).  

 

In 2002, the dominating Salmonella serovar overall in cattle in the EU was the serovar Dublin 

(European Commission 2004). In Finland, S. Dublin has not been isolated on cattle farms since 

1994, when it was isolated on one farm. In the 1960s and 1970s, only sporadic isolations of S. 

Dublin were found. In the 1980s, there was an outbreak of S. Dublin among cattle farms in Finland. 

After that, isolations of S. Dublin have only been detected in 1991, on two farms, and in 1994 

(National Veterinary and Food Research Institute 1965-2005). However, in Belgium S. Dublin is 

becoming increasingly important (Imberechts and Butaye 2006). S. Dublin has been detected both 

in the USA and Canada. In New Zealand, S. Dublin has not been detected in farm animals 

although it has been isolated in humans. In Australia, S. Dublin used to be more frequent in cattle 

than S. Typhimurium. However, since 1990, S. Typhimurium is more common in cattle (Wray and 

Davies 2000). 

 

In 2004, Salmonella Typhimurium had become the most common serovar overall in cattle in the 

EU (EFSA 2005). In 2005, S. Typhimurium was found in cattle in 14 of the 25 EU member states; 

S. Typhimurium definitive phage type 1 (DT1) was only detected in cattle in Finland. S. Infantis in 

cattle was found in five member states and S. Agona in three states (EFSA 2006). In Norway, S. 

Typhimurium is considered endemic in the country (Heir et al 2002).  
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2.3 Salmonella in Finland  
 

In Finland all Salmonella strains isolated from humans are sent by laboratories to the National 

Public Health Institute in Helsinki, Finland for verification and more accurate epidemiological 

classification. This practice has been voluntary from the 1960s onwards and compulsory from 

1994. Phagetyping of the serovars Enteritidis, Typhimurium and Paratyphi B is also carried out at 

the National Public Health Institute. This intitute has kept a nationwide register on infectious 

diseases in humans starting in 1994.  

 

Salmonellosis in humans is relatively rare in Finland: the annual incidence was 44-53 cases per 

100 000 inhabitants in 2000-2004, and 85 per cent of these were related to recent foreign travel. 

The most common serovars causing infection in humans are the serovars Enteritidis and 

Typhimurium. Most cases of S. Enteritidis are of foreign origin whereas the cases of S. 

Typhimurium are mainly (90-95%) of domestic origin. In the 1990s, an average of 350 cases per 

year of human salmonellosis of domestic origin caused by S. Typhimurium was recorded 

compared with an average 160 cases annually in 2000-2004. S. Typhimurium DT1 has been the 

predominant phage type except in 1997. S. Infantis is considered endemic in Finland. Of the 

isolations made in humans, the majority is usually considered to be of domestic origin. This 

especially applies to the isolations found in the 1970s and 1980s. The number of S. Infantis cases 

recorded in humans has decreased substantially during the 1990s; an average of 33 cases per 

year was recorded in 1995-1999, compared with an average only eight cases annually in 2000-

2004. An increase in S. Agona infections in humans was seen in 1999, with over 80 cases of 

infection. In the years 2000-2004, an average of 25 cases annually was recorded (National Public 

Health Institute 1965-1994; Ministry of Agriculture and Forestry 2000; Finnish Food Safety 

Authority Evira 2006).  

 

Salmonella Agona had been only sporadically isolated from animals in Finland before the small 

outbreaks on cattle farms in 1994-1995 and in 1997. S. Agona was not isolated in any farms in 

2001-2005 (Figure 1). S. Infantis was rarely [only 4% (20/480) of the Salmonella isolations in 1970] 

encountered among animals before the spread among broiler chickens in 1971. The latter caused 

an epidemic in both humans and broilers in Finland (Nurmi and Rantala 1972; Rantala 1976). S. 

Infantis became more common among cattle throughout Finland in the 1980s, and in the 1990s it 

became the predominant Salmonella serovar. In recent years, the number of S. Infantis infected 

farms has been five or less (Figure 1). S. Typhimurium has been relatively frequently isolated from 

animals ever since its recording was started in 1965. Phage typing of S. Typhimurium isolates 

according to the Colindale method began in March 1968. Definitive type (DT) 1 was not 

encountered in isolates obtained from animals before 1980. S. Typhimurium DT1 is also 
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considered endemic in Finland from the 1980s (Figure 1) (National Veterinary and Food Research 

Institute 1965–2005; Ministry of Agriculture and Forestry 2000; Finnish Food Safety Authority Evira 

2006). 

 

Detection of Salmonella on a farm or in a food processing plant initiates statutory measures which 

are always taken. These include epidemiological investigations, disinfection procedures and 

restrictions on the movement, sale or purchase of animals. The Finnish Salmonella control 

programme (FSCP) was first implemented in May 1995. Its objective is to keep the incidence of 

salmonella in the production animals in Finland (cattle, pigs and poultry are covered by the 

programme) and the produce from these held down to the level of no more than 1 per cent. This 

objective was attained throughout the country in 1995-2004, apart from the year 1999, when 2.2 

per cent (64/2939) of the analysed broiler production flocks tested positive for Salmonella (Ministry 

of Agriculture and Forestry 2000; Finnish Food Safety Authority Evira 2006). 
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Figure 1. The total number of Salmonella infected Finnish cattle farms from 1980 to 2005 showing 
the number of farms infected with S. Agona, S. Infantis, S. Typhimurium DT1, other phage types of 
S. Typhimurium, and other serotypes. 
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2.4 Risk assessment and risk management of salmonella infections in cattle 
 

Scientific risk assessments are important tools for estimating the magnitude of different risks and 

the effects of different interventions to control these risks (Maijala and Ranta 2003). The nature of 

the risk, the possible consequences, and their probability are evaluated in the risk assessment 

process (National Veterinary and Food Research Institute 2005). It is based on four stages: hazard 

identification, hazard characterization, exposure assessment, and risk characterization (Ranta et al 

2004). The risk assessment begins with hazard identification, where the hazard (for example, 

salmonella) is identified on a general level. The hazard identification can address questions such 

as what kind of disease the Salmonella bacteria might cause, how the disease might spread, and 

what is the incidence and prevalence of salmonella. The hazard characterization includes a more 

detailed description of the hazard: the microbe itself, the symptoms it may cause, and how it 

affects its hosts. Exposure assessment is calculated based on basic information on the exposure 

to Salmonella. To be able to assess the risk of exposure, transmission models have to be made 

(Maijala and Ranta 2003; Ranta et al 2004). Different exposure models, such as the Bayesian 

Hierarchial Modeling (Ranta et al 2005), are used to assess the exposure or estimate the true 

salmonella prevalence. A general estimate of the risk of infection is produced by combining 

information derived from the exposure assessment with information about the dose-response. Risk 

characterization can be done once the risk of infections caused by Salmonella has been quantified 

using the exposure models (Maijala and Ranta 2003; Ranta et al 2004).  

 

When risk management actions are evaluated, the true prevalence or incidence should be the 

basis for evaluation. The Finnish Salmonella Control Programme (FSCP) was introduced in 1995, 

when Finland joined the EU. The aim of the programme was to keep the domestic salmonella 

prevalence below 1 per cent along the food chain in broiler, turkey, beef, pork, and egg production. 

The FSCP for cattle is more like a monitoring system than a control programme. The regulations 

concerning cattle and beef production begin with feed control. All imported, marketed, and 

manufactured feed materials and compounded feeds are tested for Salmonella, and no batches 

with Salmonella detection are approved. The bulls for artificial insemination and their herds of 

origin are required to test negative for Salmonella. Likewise all suspected cattle (with clinical 

symptoms or epidemiological evidence) are examined bacteriologically. The intention of this 

sampling and testing of cattle is to limit the spread of Salmonella between farms and animals 

(Tuominen et al 2007). If Salmonella is detected in cattle, the herd of origin is put under official 

restrictions, including isolation of Salmonella-positive animals and the prohibition of animal 

movements. Faecal samples from all the animals are examined at one month intervals. The 

restrictions are lifted when two successive samplings are negative for Salmonella. 
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In the Hazard Analysis and Critical Control Point (HACCP), the hazards or risks and critical control 

points are determined. Among risk factors associated with salmonellosis in cattle herds are access 

to feed stores by wild birds, presence of feral cats on the farms, introduction of newly purchased 

cattle, and lack of isolation facilities (Evans 1996). In a recent study by Fossler et al (2005), cattle 

groups and environmental sample locations likely to be Salmonella-positive were assessed on 

dairy farms in the USA. Cattle-level risk factors associated with Salmonella shedding were also 

evaluated. Larger farms (with at least 100 cows) were more likely to have Salmonella-positive 

cattle compared to smaller farms. Faecal Salmonella shedding in cattle was associated with 

season being more common in summer than in winter. No association was found between 

Salmonella shedding and stage of lactation for lactating cows, parity for any cows, and age (in 

days) for calves. Therefore few factors at the cattle-level seem to offer means for salmonella 

control. A potential way of reducing contamination of the farm environment is improved sick pen 

and maternity pen management, as the sick pen floor, the manure storage area, and the maternity 

pen were more likely to be Salmonella-positive than many other environmental locations. 

 

For control strategies to be successful, the routes and sources of infection and the manifestations 

of disease must be identified. Control strategies include proper control of rodents and wild birds, 

improvements in animal feed and production hygiene, sufficient in-house cleaning and disinfection, 

and salmonella-free replacement animals (Association for Animal Disease Prevention in Finland, 

2008). 

 

2.5 Typing methods of Salmonella serovars 

 

2.5.1 Phenotypic typing methods 
 

2.5.1.1 Bacteriophage typing 
 

The method is based on the susceptibility or resistance of bacteria to a panel of lytic 

bacteriophages (i.e. viruses capable of infecting and lysing bacterial cells). The first method 

developed was the Vi-phage typing method for Salmonella Typhi (Craigie and Hjen 1938a, b). In 

1943, the Salmonella Typhimurium phage typing scheme was established. Using 11 phages, 12 

phage types were defined (Felix 1956). In 1959, it was extended to 34 types using 29 phages 

(Callow 1959). 
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In 1977, 207 "definitive types" (DTs) of S. Typhimurium were defined by using 34 phages 

(Anderson et al 1977). A different typing system, in which typing with another set of 

bacteriophages is supplemented by biotyping, is used in the Netherlands (Parker 1983, EFSA 

2005). Hungary also uses yet a different set of phages (EFSA 2005). Phage typing schemes have 

also been described for serovars Adelaide, Anatum, Bareilly, Blockley, Braenderup, 

Bovismorbificans, Enteritidis, Gallinarum, Hadar, Infantis, Montevideo, Newport, Panama, 

Paratyphi B, Virchow and Weltevreden (Grimont et al 2000). Recently a phage typing scheme for 

S. Agona was developed (Rabsch et al 2005). 

 

Phage typing is routinely used for subtyping isolates of S. Typhimurium as it is one of the basic 

methods employed in studying the epidemiology of this serovar. Even nowadays, when molecular 

methods are used for the subtyping of isolates, phage typing is still used. Phage-typing does not 

require any expensive equipment and is therefore cheap (Grimont et al 2000). However, stocks of 

biologically active phages and control strains need to be maintained. Therefore phage typing is 

only available at reference laboratories. It is very demanding even for experienced workers, and 

subject to considerable biological and experimental variability (Maslow et al 1993). Moreover, 

when only a few phage types tend to dominate over a period of time, the discriminatory ability of 

this typing method becomes diminished. In the 1990s, a multiresistant phage type of S. 

Typhimurium, DT104, emerged and spread in the UK, Denmark, USA and Canada (Kariuki et al 

1999). In 2004, the dominating S. Typhimurium phage types overall among isolates obtained from 

human infections in the EU were DT104 and DT120 (EFSA 2005). 

 

2.5.1.2 Antimicrobial susceptibility testing 
 

Salmonellae used to be susceptible to a wide range of antimicrobials in vitro. However, in 1958 

resistance to tetracycline was first noted. In 1962, resistance to ampicillin was reported in Britain 

and rapidly became common. Transferable resistances to streptomycin, tetracycline and 

sulphonamides were observed in a S. Typhimurium strain of phage type 29 from 1958, which by 

1968 had acquired a resistance spectrum with resistance to ampicillin, streptomycin, 

sulphonamide, tetracycline and furazolidone. Resistance to chloramphenicol and kanamycin was 

also reported (Parker 1983). Plasmids containing genes that confer resistance to antibiotics may 

readily be acquired by Salmonella strains (Brenner 1984). After 1976, resistant strains of S. 

Typhimurium phage types 204 and 193 caused epidemics in calves, with subsequent spread to 

man. Plasmids coding for resistance to four to six antimicrobials, including chloramphenicol, were 

carried by these strains (Parker 1983).  
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Antimicrobial susceptibility testing is relatively inexpensive and easy to use, and the frequent 

identification of a new or unusual pattern of antibiotic resistance may increase the probability of an 

impending outbreak. In the identification of the recent worldwide spread of a resistant clone of S. 

Typhimurium phage type DT104 with resistance to ampicillin, chloramphenicol, streptomycin, 

sulphonamides and tetracycline, antibiotic susceptibility testing played a major role. However, 

there are multiple genetic mechanisms by which resistance can be acquired from other strains or 

evolve within a strain, thereby causing phenotypic variation. Different strains may have similar 

resistance patterns and sequential isolates of the same strain different patterns (Maslow et al 

1993). 

 

2.5.1.3 Multilocus enzyme electrophoresis (MLEE) 
 

Genes that encode a specific enzyme may be present in one or more forms, and the amino acid 

composition of the enzyme produced may differ slightly. These differences between isomorphs can 

be detected electrophoretically (Tompkins 1992). The high degree of polymorphism, which might 

be seen in soluble cytoplasmic enzymes, may be the result of only one amino acid change. Such 

polymorphisms can be analysed on large numbers of strains by starch gel electrophoresis. 

Individual enzymes are stained with the corresponding substrates and indicator dye combinations, 

the distances of migration of the enzymes are compared, and differently migrating allelic gene 

products are thus identified. Groups of strains carrying identical allelles are called an electrotype 

(ET). The genetic distances of different ETs can be calculated based on the proportion of 

mismatch (Selander et al 1986). There tend to be fewer clones and less diverse ETs for the host 

adapted Salmonella serovars than for those serovars that are pathogenic for a variety of host 

species (Selander et al 1990). Genetic diversity and relationships among isolates of eight common 

serotypes were studied by Beltran et al (1988), who suggested that horizontal gene transfer and 

recombination of chromosomal genes that mediate the expression of cell-surface antigens has 

been a significant process in the evolution of Salmonellae. 

 

MLEE typing is based on a pattern produced by 20 or more different enzymes. The levels of 

genetic diversity among clones can also be measured. MLEE is a powerful tool to study the 

evolutionary relation of pathogenic clones. It has been shown that many bacterial infections are 

caused by a limited number of pathogenic clones. The major disadvantage of MLEE is that, 

because it is labour-intensive, it is not practical for routine use (Tompkins 1992).  
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2.5.1.4 Biotyping 
 

In biotyping, the pattern of activity for 20 or fewer cellular metabolic enzymes is established. Such 

data can be routinely obtained if automated systems for species identification are available in the 

laboratory. Variation in gene expression is most commonly the reason for isolates of the same 

strain to differ in one or more biochemical reactions. However, random mutations may also alter 

the result (Maslow et al 1993). Strains of the same serovar might show different sugar fermentation 

patterns, which are determined by the presence or absence of enzymes, and hence genetically 

determined. For example, the xylose+ and xylose- character of S. Typhi may be of epidemiological 

interest (Brenner 1984). The utilization of d-tartrate in serovar Paratyphi B is used to separate 

biotype Java that is associated with diarrhoea, from biotype Paratyphi B that is associated with 

paratyphoid. Biotype Java can utilize d-tartrate whereas biotype Paratyphi B cannot (Grimont et al 

2000). 

 

In many serovars, a subdivision according to the biochemical character yields only a small number 

of identifiable biotypes. This is because a significant number of strains behave differently in only a 

few biochemical tests (Parker 1983). Although biotyping is considered highly reliable, the 

discriminatory power of biotyping is generally low. If multiple isolates of an unusual serovar are 

detected an outbreak can be identified effectively, and occasionally epidemic strains manifest 

unique biotypes (Maslow et al 1993). In conventional biotyping, the results are expressed after a 

definite incubation time. When the rate of each reaction is read, and the kinetics of each evaluated, 

a biochemical fingerprint of an isolate is obtained (Möllby et al 1993).  

 

2.5.2 Molecular genetic typing methods 
 

2.5.2.1 Plasmid profile 
 

The first genotypic method used for strain separation within Enterobacteriaceae was plasmid 

profiling (Riley and Cohen 1982). Bacteria of the same clonal line are expected to carry the same 

plasmids since copies of the resident plasmid are distributed between the two daughter cells when 

the bacterium divides (Olsen 2000). For strains that lack plasmids or have only one or two of them, 

plasmid profiling has poor discriminatory power. Other potential problems arise from the fact that 

plasmids are extra-chromosomal elements. Plasmids carrying resistance determinants may spread 

rapidly from one strain to another and persist for prolonged periods (Maslow et al 1993). However, 

in strains with plasmids coding for drug resistance, plasmids can be lost if antibiotic selective 

pressure is withdrawn. Consequently, interpretation of typing results may be difficult (Threlfall et al 

1994). 
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The acquisition or loss of a plasmid serves as a marker for recent events (Tompkins 1992). In a 

study by Brown et al (1992), isolates of Salmonella enterica over six successive generations from a 

broiler breeding farm were analysed by plasmid profiling. In each successive generation, an 

increase in the diversity of plasmid profiles was seen. However, all the profiles observed could be 

derived from one of the existing profiles by the acquisition or loss of a single plasmid. The 

conclusion of the study was that persistence and cross-infection rather than reintroduction was the 

cause of the persisting serovar Berta infection. 

 

The stability of plasmids during storage has been assessed by Olsen et al (1994a). They found 

plasmids to be stable if the Salmonella strains were stored at -80°C and the higher the temperature 

the larger the risk of loss of plasmids. The total number of plasmids lost increased with storage 

time when stored at room temperature (22°C to 30°C). Casalino et al (1984) noted that plasmids of 

S. Wien remained stable over a period of more than ten years. In a natural outbreak, caused by S. 

Berta, a succession of different plasmid profile types was detected (Olsen et al 1996a) 

 

Plasmids in a size range of 2 to 150 kb are often carried by strains of Salmonella, but variations 

between serovars occur regarding the size distributions and frequencies (Olsen 2000). Plasmid 

analysis is only of limited use in Salmonella serotypes in which the majority of the isolates contain 

only one plasmid, e.g. serovars Dublin and Enteritidis. However, it has been particularly useful for 

discrimination within certain phage types, such as 49 and DT204c, of S. Typhimurium (Threlfall et 

al 1994). In a study by Olsen et al (1990), 99 per cent of the analysed strains of S. Dublin carried 

plasmids, but only nine different plasmids profiles were recorded thus limiting the usefulness of 

plasmid profiling in epidemiological studies. Recently, an outbreak investigation on multiresistant 

S. Typhimurium DT104 showed that plasmid profiling was more discriminatory than the high-

resolution genotyping methods of PFGE and fluorescent AFLP (Lawson et al 2004). In evaluating 

molecular typing methods for the analysis of S. Typhimurium DT104 isolates from healthy pigs, 

plasmid profiling was found to be superior to PFGE, RAPD and IS200-typing (Malorny et al 2001). 

Plasmid profiles have also been used successfully for strain discrimination in epidemiological 

investigations of outbreaks caused by Salmonella serovars such as S. Gold-coast (Threlfall et al 

1986a), S. Berta (Sørensen et al 1991; Olsen et al 1992), and S. Livingstone (Chrichton et al 

1996). By the development of other genotyping methods, plasmid profiling has lost some of its 

importance. 
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2.5.2.2 Plasmid fingerprinting and identification of plasmid-mediated virulence genes 
 

Discrimination between plasmids of similar molecular mass, or determination of the degree of 

molecular relatedness between plasmids of different size, may be achieved by digesting the 

plasmids with a restriction endonuclease and comparing the number and size of the restriction 

fragments generated (Maslow et al 1993; Threlfall et al 1994). The same restriction pattern should 

be seen in identical plasmids (Grimont et al 2000), but the results may be extremely difficult to 

interpret if a strain carries multiple plasmids (Threlfall et al 1994). However, a study by Rankin et al 

(1995) demonstrated the importance of plasmid fingerprinting, as plasmid analysis, on its own, can 

easily lead to the assumption that plasmids of the same molecular weight are the same plasmids. 

Their work showed plasmids of the same molecular weight could be unrelated whereas plasmids 

of different molecular weight could be closely related. In a study by Browning et al (1995), 

considerable plasmid diversity and evolutionary divergence was detected in the serotype-specific 

plasmid of Salmonella Dublin. Baggesen et al (1992) observed that plasmid profiling followed by 

restriction enzyme analysis was useful as it showed variations in the serotype-specific plasmid and 

also the presence of co-migrating plasmids of the same size as the serotype-specific plasmid. 

 

Plasmids carried by certain serotypes (serotype-specific plasmids) possess a highly conserved 

common area which carries genes responsible for the virulence of the serotype to certain strains of 

mice (Williamson et al 1988). A DNA probe specific for these salmonella plasmid virulence (spv) 

genes makes rapid screening of a large number of strains possible. In epidemiological 

investigations, the presence or absence of serotype-specific plasmids can be useful (Threlfall et al 

1994). At least 12 serotypes contain virulence plasmids. The size of the plasmids range from 54 to 

98 kb, and phage type differences were found in plasmid carriage within a serotype (Lax et al 

1995). 

 

2.5.2.3 Ribotyping 
 

Restriction fragment length polymorphism (RFLP) associated with the ribosomal operon and 

detected by Southern blot analysis is called ribotyping (Stull et al 1988). Initially ribotyping, 

detecting variations in the copy number and location of 16S and 23S rRNA (rrn) loci, was used as 

a taxonomic tool (Grimont and Grimont 1986). The complete nucleotide sequence of a 16S 

ribosomal RNA gene obtained from E. coli was determined by Brosius et al and published in 1978. 

Stull et al (1988) tested the ability of E. coli rRNA to hybridize with heterologous DNA purified from 

genetically diverse gram-negative bacteria. These authors found cross-hybridization to occur 

between the E. coli rRNA probe and unrelated species. Therefore a probe derived from the E. coli 

ribosomal operon can be used widely (Maslow et al 1993). 
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In the 1990s, ribotyping was widely used for the typing of many Salmonella serovars. In general, 

restriction polymorphisms in the areas surrounding the seven rRNA operons in Salmonella are 

highlighted by ribotyping (Olsen 2000). In a study by Altwegg et al (1989), ribotyping provided 

additional information and further differentiation of selected S. Typhi strains that were of the same 

phage type but not related otherwise. However, the sensitivity was dependent on the restriction 

enzymes used to digest the chromosomal DNA. Ribotyping also proved valuable in another 

analysis of S. Typhi, where a total of 31 different ribotypes were detected among isolates from both 

sporadic cases and a large, well-defined outbreak (Navarro et al 1996). Analysis of strains of S. 

Dublin by IS200-typing, ribotyping, PFGE, RFLP and plasmid profiling demonstrate that ribotyping 

was the most discriminatory method (Olsen and Skov 1994). Ribotyping was used to trace the 

source and extent of spread of human infections caused by S. Livingstone (Crichton et al 1996). 

Guerra et al (1997) evaluated five different restriction endonucleases for optimising the ribotyping 

of S. Typhimurium for epidemiological and phylogenetic purposes. In their system, ribotyping had 

higher typability and sensitivity compared to phage typing. For both sporadic and epidemic isolates 

of S. Brandenburg, only two ribotypes were seen (Baquar et al 1994a). Five different ribotypes 

were found in isolates of S. Infantis, although ribotyping alone was not efficient in differentiating 

between various infection sources (Pelkonen et al 1994). Ribotyping of ten representative strains 

of S. Typhimurium DT193 yielded three different ribotypes. However, the 16S rrn profile could not 

distinguish between S. Typhimurium and S. Stanleyville (Baquar et al 1994b). Ribotyping of 

selected strains of 33 phage types of S. Enteritidis gave eight ribotypes, as strains of several 

phage types had the same ribotype (Olsen et al 1994b). In a study of 32 strains of Salmonella 

serogroup D1 (O antigen group 9) eleven distinct 16S rRNA gene profiles were observed, seven of 

which were specific to individual serotypes (Stanley et al 1994). However, Ezquerra et al (1993) 

concluded that although the 16S rRNA gene profiles may differ within a serovar, they are also 

sometimes common to many serovars. 

 

The fingerprints provided by ribotyping can be both easy to interpret and to reproduce (Threlfall et 

al 1994). Nevertheless, the discriminatory power of ribotyping is limited, because the ribotypes are 

generally a relatively stable characteristic within a species and epidemiologically unrelated isolates 

sometimes have the same pattern (Maslow et al 1993). On the other hand, when ribotyping is 

applied in combination with other DNA-based typing methods such as IS200 fingerprinting and 

PFGE, its discriminatory power is increased and it can be suitable for discriminating between 

strains both within serotype and phage type (Threlfall et al 1994). 
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2.5.2.4 IS200-typing 
 

Insertion sequences (IS) are mobile genetic elements that contain only the genes that are 

necessary for their own transposition. In 1983, Lam and Roth (1983) described a 708 base pair 

Salmonella-specific insertion sequence, IS200. This insertion sequence has been shown to be 

distributed on conserved loci on the chromosome of many Salmonella serotypes in copy numbers 

ranging between one and 25 (Gibert et al 1990). IS200-typing is based on the number and 

distribution of IS200 elements in the genome. It has been found to be more valuable for 

differentiation within serotypes where phage typing schemes do not exist, such as for S. 

Brandenburg and S. Infantis (Threlfall et al 1994). In combination with ribotyping, it is an especially 

suitable method of discrimination for epidemiological purposes (Threlfall et al 1994) unless the 

copy number happens to be low and only a few bands are generated (Stanley and Saunders 

1996).  

 

The absence of IS200 has been noted in strains of S. Agona, S. Daressalam and S. Hadar (Olsen 

2000). However, Fantasia et al (1997) found IS200-typing to be an extremely useful tool for 

discriminating clones of S. Hadar in their study on isolates from sporadic and epidemic cases. 

Differentiation within the phage type could not be achieved for S. Enteritidis. On the other hand, 

discrimination has been achieved both within serotype and phage type for S. Typhimurium 

(Threlfall et al 1994). Distinct genotypes for S. Paratyphi B and S. Java were distinguished by 

IS200-typing, with 13 unique IS200-profiles, for the majority of strains shared the predominant 16S 

rRNA profile (Ezquerra et al 1993). In a study on 32 selected isolates of Salmonella serogroup D1 

(O antigen group 9), Stanley et al (1994) observed 20 different IS200-profiles though four isolates 

had no copies of the insertion sequence at all. In S. Infantis, for which either phage typing or 

plasmid profiling per se had not been applicable, the combination of ribotyping and IS200-typing 

generated 15 genotypes. Separately, the two methods gave five and 11 profiles, respectively 

(Pelkonen et al 1994). In S. Dublin, only one IS200 pattern was seen in the 35 strains examined 

(Olsen and Skov 1994). The pattern obtained was identical to that of a previous study on bovine 

and human isolates of S. Dublin from England and Wales. In S. Abortusovis, IS200-typing proved 

more reliable than plasmid profiling. It also provided information on the geographic origin of the 

strains, since the IS200-profiles were less polymorphic in isolates from the same area (Schiaffino 

et al 1996). 

 

IS200-typing was more valuable than ribotyping in differentiating isolates of S. Montevideo (Old et 

al 2000). In S. Glostrup isolates, both IS200-typing and ribotyping proved valuable, as seven and 

three different profiles were detected, respectively (Old et al 1999). Neither IS200-typing nor 

ribotyping proved very valuable for a majority of the analysed isolates.  
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IS200-typing in S. Thompson yielded five different profiles whereas ribotyping yielded 10 profiles. 

However, 84 per cent of the isolates were of the same ribotype. This major clone was IS200-

negative, but in analysing the other isolates IS200-typing was found to be highly discriminatory 

(Chisholm et al 1999). In S. Typhi, IS200-typing is not very valuable for strain discrimination. 

Although in a study by Navarro et al (1996), eight different IS200-profiles were obtained, one 

profile being predominant. Similarly, IS200–typing has not been valuable for the analysis of S. 

Gallinarum either. The majority of the analysed strains had the same IS200-profile irrespective of 

their biotype (Olsen et al 1996b). In a study on a novel serotype of Salmonella (4,12:a:-), ribotyping 

was more discriminatory than IS200-typing (Chrichton et al 2000). 

 

The fingerprints provided by IS200-typing can be both easy to interpret and reproduce, but the 

analysis might be indiscriminate particularly within phage type. In addition IS200-elements are not 

possessed by all serotypes or phage types (Threlfall et al 1994). Even so, in taxonomic studies of 

relationships between and within Salmonella serovars, IS200-typing has often been used (Olsen 

2000). 

 

2.5.2.5 Pulsed-field gel electrophoresis (PFGE) 
 

PFGE was first described by DeMarini and Fuscoe in 1991. PFGE is a variation of agarose gel 

electrophoresis where two electric field orientations are alternated. Linear fragments of DNA 

ranging from less than 10 kb to more than 6 Mb can be separated with excellent resolution 

(Threlfall et al 1994). Clamped homogeneous electric field (CHEF) electrophoresis is the most 

complex configuration of this technique. In CHEF, an array of hexagonally arranged electrodes is 

used to generate uniform electric fields at an angle of 120° to each other. This ensures the straight 

line migration of large DNA fragments through the gel (Grimont et al 2000). For PFGE, restriction 

enzymes that cleave the chromosomal DNA into between 5 and 20 fragments ranging in size from 

10 to 800 kb are used. Typically, distinct well-resolved fragments representing the entire bacterial 

chromosome are shown in one gel (Maslow et al 1993). PFGE has been chosen as the method 

used in both PulseNet US, an American collaboration for surveillance of food-borne pathogens 

(http:/www.cdc.gov/pulsenet), and the European Enternet, where the typing data from different 

sources and different countries are compared (Gatto 2006). The PFGE protocol is standardized for 

all laboratories participating in the network, and PFGE profiles are stored in a central database. 

Although highly discriminative for Salmonella, PFGE is time-consuming and require effort in the 

analysis and comparison of restriction profiles (Grimont et al 2000). 

 

Epidemiological analyses of Salmonellae are often done using combinations of several typing 

methods, such as phage typing (when applicable), ribotyping, IS200-typing, plasmid profile and 
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PFGE. PFGE has been used both for subdivision within serotype such as S. Brandenburg (Baquar 

et al 1994a), S. Berta (Ellis et al 1998), and S. Javiana (Lee et al 1998) and phage type such as S. 

Typhi (Nair et al 1994), and S. Enteritidis (Lukinmaa et al 1999). 

 

S. Agona does not carry IS200 (Gibert et al 1995) and is unlikely to be subdivided by ribotyping 

(Threlfall and Hampton, unpublished). However, PFGE proved useful in the analysis of an 

international outbreak caused by S. Agona contaminated snacks (Threlfall et al 1996). In 

investigating an outbreak of human salmonellosis caused by S. Infantis, PFGE typing results 

indicated a common source for the outbreak (Wegener and Baggesen 1996). In characterizing 

human and environmental isolates of S. Infantis, 35 distinct PFGE profiles were detected. None of 

the environmental isolates shared the profile common to all the human isolates, therefore the 

source for the human outbreak could not be identified (Murakami et al 1999). PFGE results 

indicated a spread of a single strain of S. Infantis among humans in Argentina (Merino et al 2003). 

Moreover, PFGE proved to be very useful for subdivision of strains of S. Typhimurium definitive 

type (DT) 12, 193 and 104 in an outbreak. In particular, the PFGE profiles of DT12 and DT193 

were identical, whereas DT104 yielded a clearly different profile (Corbett-Feeney and Ni Riain 

1998). In a study by Kariuki et al (1999), isolates of 11 different phage types of S. Typhimurium 

were divided into eight PFGE clusters. No consistent pattern of association between the phage 

types of the isolates and a particular PFGE cluster was seen. 

 

A problem reported infrequently in some serovars such as S. Saintpaul, is the presence of 

unspecific nuclease activity (Baggesen et al 1996). This phenomenon makes the preparation and 

analysis of PFGE profiles impossible. Recently, Liesegang and Tschäpe (2002) determined that 

the DNA is degraded during electrophoresis by Tris radicals in the running buffer. By adding 

thiourea to the Tris-containing buffer, the degradation of the DNA could be prevented. 

  

In a study of 110 S. enterica subspecies enterica isolates and 25 serotypes genotyped by 

multilocus sequence typing (MLST), PFGE and amplified fragment length polymorphism (AFLP), 

PFGE was found to be as discriminatory as AFLP. Moreover, PFGE fingerprints were easier to 

interpret and reproduce, in addition to being less time-consuming to analyse. Similarly, it is easier 

to compare PFGE profiles between laboratories, and therefore PGFE is the preferred molecular 

typing method for surveillance and outbreak investigations (Torpdahl et al 2005). In typing 85 

clinical isolates of S. Typhimurium, PFGE was superior to MLST, as MLST could reveal no 

differences between the nucleotides within the four selected genes in the analysed isolates (Fakhr 

et al 2005). However, for the typing of the highly homogenous S. Typhimurium DT104 in outbreak 

investigations, even PFGE is not discriminative enough (Murphy et al 2001).  
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2.4.2.6 Polymerase chain reaction (PCR) - based typing methods 
 

Random amplified polymorphic DNA (RAPD) typing, arbitrarily primed PCR (AP-PCR) 

RAPD or AP-PCR is based on the amplification of DNA fragments, in which the primer is not 

directed at a known genetic locus. The single short primer is typically 10 base pairs in length, and 

result in the amplification of one or more unpredictable loci. The number and size of the PCR 

generated set of fragments is the basis for the typing of the isolates (Maslow et al 1993). Although 

the typing method is fast and simple, the reproducibility has been variable (Threlfall et al 1994). It 

is affected by the thermal cycler and DNA polymerase variations (Meunier and Grimont 1993). 

However, by using a commercially available PCR buffer optimization kit, standardization of thermal 

cycling parameters and selection of discriminatory primers, a highly discriminatory and 

reproducible characterization of Salmonella isolates can be achieved (Hilton et al 1997). Despite 

this, the between-laboratory reproducibility remains a problem in RAPD (Grimont et al 2000). 

 

The first published studies on the use of RAPD or AP-PCR in the analysis on Salmonellae were on 

isolates of S. Enteritidis. In two studies, better discrimination between the isolates were obtained 

by RAPD than by phage typing (Fadl et al 1995) or phage typing, ribotyping and PFGE (Lin et al 

1996). Another study showed that RAPD was useful in discriminating isolates of S. Enteritidis in 

outbreak investigations both on its own, and as a supplement to phage typing and PFGE (Skibsted 

et al 1998). One primer used in the RAPD analysis of 89 Salmonella isolates belonging to 22 

serotypes, produced fingerprints that discriminated between different isolates but did not 

discriminate between serotypes. Another primer produced a pattern shared by 35 isolates from 12 

serotypes. It is also difficult to match fingerprints from different gels by computer (Burr et al 1998). 

For these reasons, Lim et al (2005) concluded that a combination of RAPD and ERIC-PCR could 

be more useful in differentiating strains of Salmonella spp than a combination of two different 

RAPDs. In a comparative study three genotyping methods (automated ribotyping, PFGE and 

RAPD) were used to analyse 32 isolates of S. Livingstone. The discriminatory ability in addition to 

the reproducibility for RAPD was found to be low. However, RAPD was both rapid and 

inexpensive, compared to PFGE, and might therefore be suitable for screening purposes (Eriksson 

et al 2005). 
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Enterobacterial repetitive intergenic consensus (ERIC)-PCR 

A highly conserved, repetitive element, about 126 bp in length, was identified in Salmonella. 

However, the chromosomal locations of these enterobacterial repetitive intergenic consensus 

(ERIC) sequences may differ between and within different species and strains, providing a basis 

for typing (Grimont et al 2000). The DNA fingerprints obtained by ERIC-PCR are not very complex, 

and making finer distinctions between the strains are more difficult (Versalovic et al 1991). 

 

The use of ERIC-PCR for subtyping Salmonellae was first described by Kerouanton et al (1996), 

but it could not subdivide 32 strains of S. Dublin. In a study by Burr et al (1998), ERIC-PCR 

produced unique fingerprints for almost all 89 Salmonella isolates belonging to 22 serotypes, but 

these fingerprints did not identify the serotypes. Furthermore, ERIC-PCR was found to be valuable 

in the analysis of S. Typhimurium, S. Virchow, S. Enteritidis, S. Abortusequi, S. Choleraesuis, S. 

Bareilly and S. Dublin (Bennasar et al 2000; Chmielewski et al 2002; Saxena et al 2002). However, 

it was not able to differentiate between Argentinian strains of S. Infantis (Merino et al 2003). 

 

Repetitive extragenic palindromic (REP)-PCR 

Repetitive extragenic palindromic (REP) consensus sequences of 38 bp have been identified in 

Salmonella, and among other enteric bacteria. Fingerprints of different bacterial genomes can be 

produced by using these sequences as efficient primer binding sites in PCR reactions. The 

complex DNA fingerprints are reproducible and diagnostic for specific strains (Versalovic et al 

1991). 

 

REP-PCR was first used for the typing of Salmonellae in 1996, when only one type was detected in 

32 strains of S. Dublin (Kerouanton et al 1996). In contrast, REP-PCR was useful in the analysis of 

isolates of S. Saintpaul, S. Typhimurium, S. Virchow, S. Enteritidis and S. Infantis (Beyer et al 

1998; Bennasar et al 2000; Chmielewski et al 2002; Merino et al 2003). Modified REP-PCR typing 

with the ERIC2 and BOXA1R primers was highly reproducible in the retrospective analysis of an 

outbreak of S. Infantis. It also distinguished between the serovars (Johnson et al 2001). In a study 

with 68 Salmonella isolates of ten different serovars, both PFGE and REP-PCR were able to 

differentiate among isolates of the same serovar, but REP-PCR using BOX, ERIC, and REP 

primers had a greater discriminatory capacity than PFGE in differentiating closely related isolates. 

It was suggested that REP-PCR would therefore be the preferred method in transmission studies 

of Salmonella, in those cases in which an individual isolate needs to be traced back to a specific 

source (Weigel et al 2004). Woo and Lee (2006) also suggested that REP-PCR (using ERIC and 

REP primers) may be preferred to PFGE as the most suitable method. In another study, REP-PCR 

with the primers ERIC and (GTG)5 were compared with each other with regard to their 

discriminatory power between serotypes. The reproducibility was poor between different PCR runs 
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and one serotype did not always correlate to only one ERIC or (GTG)5  fingerprint. However, the 

fingerprint heterogeneity within a serotype was limited. As REP-PCR produced fingerprints of 

nontypeable strains, it can reveal additional information when serotyping is not possible 

(Rasschaert et al 2005). 

 

PCR-restriction fragment length polymorphism (RFLP) 

In PCR-RFLP, a specific fragment is subjected to PCR amplification and the amplified DNA is 

subsequently digested with restriction enzymes. This restriction profile is more reproducible than 

the pattern obtained by RAPD (Olsen 2000). 

 

A study demonstrated that using PCR-RFLP primers annealing to regions of the bacterial rRNA 

operon yielded unique electrophoretic patterns of the HinfI digested PCR products in the six 

serotypes of Salmonella enterica analysed (Shah and Romick 1997). Hong et al (2003) concluded 

that PCR-RFLP of 32 flagellin genes (24 phase 1 and eight phase 2 genes) using restriction 

endonucleases Sau3A and HhaI was fast and accurate in identifying the serotype of 112 

Salmonella isolates. 

 

Amplified fragment length polymorphism (AFLP) 

The AFLP method is based on selective PCR amplification of restriction fragments of genomic 

DNA without prior sequence knowledge (Vos et al 1995). The restriction fragments are generated 

by two restriction enzymes, with 4-bp and 6-bp recognition sites. Then the template DNA for PCR 

amplification is generated by ligating double-stranded adapters to the ends of the DNA restriction 

fragments. The restriction fragments are selectively amplified using primers which contain adapter-

defined sequences. The amplified fragments are detected by denaturing polyacrylamide gel. The 

pattern obtained is highly reproducible, and the patterns can be scored by automatic reading of 

gels and direct transfer into software programs (Olsen 2000).  

 

In the first published study on the use of AFLP in Salmonellae, 78 different Salmonella strains and 

62 serotypes were analysed. All serotypes had unique profiles, and AFLP also enabled phage type 

identification (Aarts et al 1998). AFLP analysis on 89 strains of Salmonella including both species 

S. bongori and S. enterica in addition to all subspecies of S. enterica showed that AFLP is useful in 

studies on population structure in Salmonella (Torpdahl and Ahrens 2004). In addition, AFLP was 

found to be more discriminatory than ribotyping and PFGE in the analysis of S. Typhi strains (Nair 

et al 2000). In another study, AFLP differentiated between S. Typhimurium phage types DT9 and 

DT135, and the resulting polymorphic bands could be used for subtyping within both phage types 

(Lan et al 2003). Molecular markers using AFLP were tested on 121 isolates of 33 phage types of 

S. Typhimurium. These markers correlated with phage type distribution thereby showing a potential 
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to replace phage typing in the future (Lan et al 2007). In a longitudinal study of 18 pig farms over a 

three-year period, AFLP differentiated between distinct clones within DT104. It was also more 

discriminatory than the PFGE and REP-PCR methods (Gebreyes et al 2006). In a study on S. 

Typhimurium comparing three PCR-based methods, AFLP, PCR-phage typing and detection of 

integrons, the highest discriminatory power was achieved with the use of AFLP (Mikasová et al 

2005). 

 

A single-enzyme approach (SAFLP) based on the use of only one restriction enzyme with a single 

adapter was used to fingerprint 30 strains of S. enterica belonging to 14 different serotypes. 

SAFLP was able to differentiate between the serotypes and also to differentiate between both the 

phage types and between individual strains. Another advantage of SAFLP, besides its specifity, is 

its reproducibility and speed. It is faster to perform than many other DNA-based methods (Peters 

and Threlfall 2001). Fluorescent AFLP (FAFLP) uses fluorescent dye-labeled PCR primers. It may 

provide important insights into the microepidemiology of different Salmonella serovars (Lawson et 

al 2004). FAFLP was applied to 46 isolates of S. Typhimurium, comprising nine phage types. This 

method is highly discriminatory and was capable of grouping most serovar Typhimurium isolates 

according to phage type (Hu et al 2002). In a study by Tamada et al (2001), S. Typhimurium 

strains were analysed by both fluorescent AFLP and PFGE; both methods were equally useful for 

epidemiological typing, though no data on the phage type was given. In a study on 97 strains of S. 

enterica subsp. enterica, FAFLP had a discriminatory capacity equal to that of PFGE (Lindstedt et 

al 2000). In another study, FAFLP showed a greater ability than PFGE to discriminate between 

outbreak-associated and epidemiologically unrelated isolates of S. Typhimurium DT126. However, 

neither method was sufficiently sensitive to separate all epidemiologically unrelated DT126 isolates 

from the outbreak isolates (Ross and Heuzenroeder 2005a). When investigating an outbreak of 

multiresistant S. Typhimurium DT104, the genotype of the outbreak-associated strain could not be 

differentiated from that found in most multiresistant DT104 isolates by either PFGE or fluorescent 

AFLP (Lawson et al 2004). When analysing 110 isolates and 25 serotypes of S. enterica 

subspecies enterica with multilocus sequence typing (MLST), PFGE and AFLP, it was concluded 

that with the MLST scheme used, PFGE and AFLP had a higher discriminatory power. It was 

suggested that AFLP should be used for local outbreak investigations, as the interpretation of the 

AFLP fingerprints was very subjective and dependent on the person performing both the analysis 

and the interpretation (Torpdahl et al 2005). 

 

IS200-PCR 

IS200-PCR is a procedure for the amplification of DNA fragments with outward-facing primers 

complementary to each end of the insertion sequence IS200. The method was evaluated and 

compared with other molecular methods such as ribotyping, RAPD analysis, ERIC-PCR and PCR 
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ribotyping (Millemann et al 2000). The results for IS200-PCR were in accordance with those of the 

other typing methods for the analysed isolates of S. Typhimurium, but no data on the phage type 

was given. 

 

Multilocus sequence typing (MLST) 

In MLST, a set of housekeeping, ribosomal, and/or virulence-associated genes are amplified by 

PCR. Usually housekeeping genes are used. Then automatic sequencers are used to determine 

the nucleotide sequences of approximately 400-bp regions of at least seven genes. The data 

provided by MLST is similar to that obtained by multilocus enzyme electrophoresis (MLEE) except 

in much greater detail, as MLST has the ability to assess individual nucleotide changes 

(Kotetishvili et al 2002; Ross and Heuzenroeder 2005b). MLST is considered a useful tool for 

studying evolution and global epidemiology of Salmonellae (Ross and Heuzenroeder 2005b), and 

in surveillance at both the national and international level, as the technique is very reproducible 

and can easily be exchanged between laboratories. However, the technique is less useful for local 

epidemiological surveillance and outbreak investigations, as it is not discriminatory enough 

(Torpdahl et al 2005). 

 

MLST using four genes (16S rRNA, manB, pduF, gluA) was able to differentiate between strains of 

several PFGE types in a study on 231 Salmonella isolates grouped into 22 serotypes and 12 

strains of undetermined serotype. Moreover, MLST typed some isolates that were untypable by 

PFGE. MLST with these particular genes was more discriminatory than PFGE as it detected all 

genetic variation within the amplified gene fragments. In contrast, PFGE examined only those 

changes that occurred in the cleavage sites for the particular restriction enzyme used. On the other 

hand, PFGE randomly 'probes' the entire genome (Kotetishvili et al 2002). When 110 isolates of 25 

serovars of S. enterica subspecies enterica were investigated by the MLST method using seven 

housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, thrA), that lacked diversity, the ability 

to discriminate between isolates was lower than that obtained with the other methods used (PFGE 

and AFLP) (Torpdahl et al 2005). In a comparison study a total of 85 clinical isolates of S. 

Typhimurium from cattle were analysed by PFGE and MLST. The selected genes used were three 

housekeeping (manB, pduF, glnA) and one virulence (spaM) gene. No nucleotide differences 

between the tested isolates could be detected by MLST (Fakhr et al 2005). On the other hand, 

Sukhnanand et al (2005) analysed 25 S. enterica isolates, of five different serotypes mainly from 

cattle. The MLST targeted five housekeeping (panB, icdA, manB, mdh, aceK) and two virulence 

(fimA, spaN) genes. This study found MLST was discriminative both between and within serovar, 

including S. Typhimurium. One must therefore conclude that the choice of the targeted genes is 

crucial in obtaining discrimination between isolates. 
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Genomic sequences derived from temperate phages in S. Typhimurium were used to design 

primer sets, which were used to analyse sequence variations of prophage loci. The typing was 

based on the presence or absence of an amplified product. This multiple amplification of phage 

locus typing (MAPLT) was more discriminatory than PFGE and MLST with the housekeeping 

genes (fhuA, sucA, tonB, manB, glnA), regardless of phage type (Ross and Heuzenroeder 2005b). 

 

Multiple-locus variable-number tandem-repeats analysis (MLVA) and variable number of tandem 

repeats (VNTR) 

The variable number of tandem repeats (VNTR) belong to a class of repetitive DNA that appears to 

contain a high level of polymorphism, thereby giving the VNTR-based typing a high discriminatory 

capacity (Lindstedt et al 2003). The multiple-locus variable-number tandem-repeats analysis 

(MLVA) is based on capillary separation of multiplexed PCR products from VNTR loci in the 

bacterial genome. These PCR products are labeled with fluorescent dyes (Lindstedt et al 2003, 

2004). The VNTR-based method has a greatly superior discrimination within the highly 

homogenous S. Typhimurium DT104 phage type compared to those of XbaI PFGE, AFLP and 

integron pattern analyses (Lindstedt et al 2003). These authors also observed a high correlation 

between MLVA clusters and PFGE clusters of S. Typhimurium (Lindstedt et al 2003, 2004). 

However, the MLVA method is not suitable for predicting phage types, as it does not group all the 

similar phage types within the same MLVA clusters, even though a correlation with the S. 

Typhimurium phage types was found (Lindstedt et al 2004). MLVA was effective in identifying a 

regional outbreak of S. Typhimurium DT12 in Denmark and locating its source, whereas the 

routinely used PFGE did not discriminate between the isolates (Torpdahl et al 2006). MLVA was 

evaluated, and compared with PFGE and phage typing, for subtyping S. Enteritidis. It was 

concluded that MLVA was more discriminatory than PFGE and phage typing among non-

epidemiologically in addition to epidemiologically linked isolates. MLVA also was found to have 

good reproducibility (Boxrud et al 2007). 

 

2.5.2.7 DNA microarray 

 

The DNA microarray methodology allows assessment of differences and changes in bacterial 

genomic contents. It has been widely used for comparative Salmonella research since genomic 

comparison of S. enterica serovars and S. bongori were performed by Chan et al in 2003. Porwollik 

et al (2004) found that gene contents sometimes differed more within a serovar than between 

serovars. The Salmonella strains that share a distinct profile of gene content are called genovars. 

Two distinct groups among 13 strains of serovar Typhimurium DT104 were identified by a 

prototype DNA microarray developed for strain differentiation (Pelludat et al 2005). Cooke et al 

(2007) used microarrays to detect genes that exhibit significant genetic variation in S.Typhimurium, 
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and that could be used for discrimination between field isolates. Prophage sequences were found 

to be hot spots of genome variation, and multiplex PCR assays were designed to distinguish 

between S. Typhimurium isolates cost-effectively. Although epidemiological application of DNA 

microarray is still in its infancy, the technology will no doubt lead to improved molecular genetic 

typing methods in the near future.  

 

2.5.3 Trends in typing of Salmonellae 

 

To evaluate any possible trends in genotyping of Salmonellae and to see the development and 

overall popularity of certain phenotypic and molecular typing methods in research on Salmonella, 

searches on Medline on a selected typing method and salmonella were conducted in March 2007 

(http://www.ncbi.nlm.nih.gov and www.pubmed.gov). DNA microarrays are not included as a typing 

method although they are currently widely used. They are mainly used in non-epidemiological 

typing studies. The use of various typing methods including the first publication from 1950 onwards 

is shown in Table 1. The use of both phenotypic and molecular typing methods over time is shown 

in Figures 2A and 2B. Apart from the last time period, which is from 1.1.2005 to March 2007, each 

time period is of five years duration starting at 1950-1954 for the phenotypic methods. For 

genotypic methods start at 1980-1984 onwards. Many new genotypic methods were developed in 

the early 1990s, with ribotyping, IS200-typing and PFGE. However, the introduction of PCR 

strongly increased the number of various, PCR-based, typing methods available. Judging by the 

number of new publications after the introduction of a new typing method, the overall popularity of 

PFGE as a first choice of typing method seems fairly clear. PFGE has also been chosen as the 

‘Gold Standard’ typing method in internationally standardized protocols, such as PulseNet and 

Enternet. Some typing methods never seem to have gained any further popularity (e.g. the 

phenotypic methods MLEE and biotyping, or several PCR-based molecular typing methods). 

However, for the very recent and promising PCR-based typing methods, such as MLST, MLVA and 

VNTR, it is still too early to say. The same applies to the DNA microarray methodology. 
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Table 1. The overall use of various phenotypic and molecular typing methods in typing Salmonella 
serovars from 1950 onwards. Results of a Medline search on the methods and salmonella 
conducted on 13th March 2007. The total number of hits and the first publication for Salmonella 
typing are shown.  
 
Typing method 
 

Number of hits First publication 

Bacteriophage typing 
 

893 1950; Scholtens RTa 

Biotyping 
 

67 1956; Levi E 

Antimicrobial susceptibility testing 
 

110 1977; Balzer K 

Multilocus enzyme electrophoresis 
 

32 1988; Beltran P et al 

Plasmid profiles 
 

225 1982; Riley, Cohen 

Plasmid fingerprinting 
 

100 1982; Taylor et al 

IS200-typing 
 

61 1991; Stanley et al 

Ribotyping 
 

146 1993; Esteban et al 

PFGE 
 

607 1994; Olsen et al  

AP-PCR 
 

7 1995; Fadl et al 

RAPD-PCR 
 

51 1996; Lin et al 

ERIC-PCR 
 

13 1996; Kerouanton et al 

REP-PCR 
 

22 1996; Kerouanton et al 

Identification of spv genes 
 

4 1997; El-Gedaily et al 

PCR-RFLP 
 

22 1997; Shah, Romick 

AFLP 
 

12 1998; Aarts et al 

IS200-PCR 
 

1 2000; Millemann et al 

MLST 
 

10 2002; Kotetishvili et al 

VNTR 
 

7 2003; Lindstedt et al 

MLVA 5 2004; Lindstedt et al 
 
a The phage typing scheme for Salmonella Typhimurium was established in 1943. 



 

 

 

40

 

0

50

100

150

200

250

50-
54

55-
59

60-
64

65-
69

70-
74

75-
79

80-
84

85-
89

90-
94

95-
99

00-
04

05-
07

year

nu
m

be
r o

f h
its

multilocus enzyme
electrophoresis (1988-2007)

microbial susceptibility testing
(1977-2007)

biotyping (1956,1970-2007)

bacteriophage typing               
(1950-2007)

 
 
 
 
 
Figure 2A. The use of phenotypic typing methods in typing Salmonellae over time. Results of 
Medline search on the methods and salmonella was conducted in March 2007. The total number of 
hits within the time period and the years when the method has been in use according to the 
Medline records are shown. 
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Figure 2B. The use of molecular typing methods in typing Salmonellae over time. Results of 
Medline search on the methods and salmonella was conducted in March 2007. The total number of 
hits within the time period and also the years when the method has been in use according to the 
Medline records are shown. 
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3. AIMS OF THE STUDY  
 

The aim of this work was to understand the molecular epidemiology of salmonella infections in 

cattle caused by the major endemic serovars Salmonella Infantis, S. Agona and S. Typhimurium 

DT1, and thereby to: 

 

- identify risk factors for human infections, 

- identify infection sources for outbreaks, 

- follow the persistence of particular infections, 

- recognize new infections, and 

- assess the efficacy of control measures. 

 

The specific aims of the study were to: 

 

1. Identify the genotype of the feedstuff-related S. Infantis outbreak strain and detect the farms that 

might have got their S. Infantis infection from the contaminated feed in 1995, and to follow the 

stability of the feedstuff-related genotypes on selected farms (I). 

 

2. Describe the genetic diversity among S. Infantis isolates obtained from Finnish cattle over two 

decades, follow the persistence of the feedstuff-related outbreak strain from 1995 in the cattle 

population, and learn about the genetic variation of S. Infantis isolates in individual herds with long-

lasting infections (II). 

 

3. Analyse, whether the S. Agona infection in cattle was genetically related to the infection in 

humans by molecular means, particularly the outbreak among humans in 1999 (III). 

 

4. Characterize the S. Typhimurium DT1 infection in cattle, other animals and in humans to identify 

sources of human infections (IV). 

 

 

 



 

 

 

43

4. MATERIAL AND METHODS 

 

4.1 MATERIAL 
 

The Salmonella isolates were mainly obtained from the collections belonging to the Finnish Food 

Safety Authority Evira (the former National Veterinary and Food Research Institute, EELA, is a part 

of Evira), Helsinki, Finland, and to the National Public Health Institute, Laboratory of Enteric 

Pathogens, Helsinki, Finland. Phage typing of S. Typhimurium isolates was carried out at the 

National Public Health Institute in Finland, where it began by the Colindale method in March 1968. 

Escherichia coli strains V517 (35.6, 4.8, 3.7, 3.4, 1.8, 1.4 MDa) (Macrina et al 1978) and 39R861 

(98.0, 42.0, 23.9, 4.6 MDa) (Threlfall et al 1986b) were used as plasmid reference strains. 

 

4.1.1 S. Infantis isolates (I, II)  
The isolates (total no = 659) were obtained from the Finnish Food Safety Authority Evira in 

Helsinki, Finland. This includes the former National Veterinary and Food Research Institute (EELA) 

in Helsinki, and its regional laboratories in Oulu, Seinäjoki and Kuopio (n=655; 636 isolates from 

cattle from 478 farms, and 19 isolates from feed). The Plant Production Inspection Centre in 

Vantaa (n=4) is also now part of Evira.  

 

In the former province of Vaasa (where most S. Infantis isolations from cattle were made in the 

1990s) as early as 1971 the first isolations were found in: imported soya feed, hygiene samples in 

local slaughterhouses, pig, cattle, and a broiler rearing facility. In the subsequent years, isolations 

were obtained from poultry slaughterhouses and in 1976 from imported slaughterhouse waste. 

From 1978 onwards, cattle isolations have been obtained every year (Aho et al 1996; National 

Veterinary and Food Research Institute 1965-2005) (II: table 1). 

The analysed S. Infantis isolates from cattle originated from farms (n=588; 382 faecal and 206 

other isolates), slaughterhouses (n=15) and slaughter transportation vehicles (n=33) from 1985 to 

2003. Apart from carcass-samples from the slaughterhouse, the farm isolates were mostly found in 

faecal samples. The samples from slaughterhouses and cattle transportation vehicles were 

hygiene samples and therefore not to be traced to any specific farm. The cattle feed isolates 

originated from the feed production plant (n = 5) and cattle farms (n = 18). The cattle farm isolates 

were representative of the geographical distribution of S. Infantis positive farms (II: figure 2). Two 

or more isolates taken from 142 farms during the eradication of the infection were available for 

analysis. If available, isolates from faecal samples were analysed. The isolates were either 

obtained over the same year or from several years. All isolates had been serologically confirmed to 

be S. Infantis and stored at -70°C, except for the isolates obtained during the 1980s, which were 

stored on egg agar slopes prior to analysis. 
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4.1.2 S. Agona isolates (III)  
The isolates (total n = 110) were obtained from the Finnish Food Safety Authority Evira in Helsinki, 

Finland [the former National Veterinary and Food Research Institute (EELA) in Helsinki, and its 

regional laboratories in Oulu, Seinäjoki and Kuopio (n=62) and the Plant Production Inspection 

Centre in Vantaa (n=2) are now part of Evira], from the National Public Health Institute, Helsinki, 

Finland (n = 41), from the Laboratory of Fur Animal Association, Vaasa, Finland (n = 2) and from 

two commercial feed producing companies in Finland (n = 3). 

 

Salmonella Agona was not isolated in Finnish production animals until 1975, when it was detected 

in one sample obtained from a turkey. In 1976, it was isolated in a horse and also a hen. The next 

encounter was in 1981, when two cattle farms were found to be Salmonella positive. In 1983, S. 

Agona was detected on one cattle farm. In 1981, 1982, and 1984, S. Agona was isolated in 

samples obtained from foxes. In 1985, it was isolated in a dog. In 1986 and 1987, it was isolated in 

two cattle farms. In 1988, it was isolated in a dog and also a hen. Then no isolations were detected 

until 1994, when a cat tested positive and, at the end of the year, two cattle farms tested positive. 

The first outbreak among cattle in Finland occurred in 1994-1995 and involved eight farms. 

Another small outbreak among cattle occurred in 1997. Of the cattle farms tested after the first 

outbreak, four, seven, two, one and one were positive for S. Agona for the years 1996, 1997, 1998, 

1999 and 2000 respectively. After 2000, no farms tested positive for S. Agona (National Veterinary 

and Food Research Institute, 1985-2005).   

The analysed S. Agona isolates were obtained from cattle, animal feed, fur animals, humans and 

other sources during the years 1984 to 1999. Isolates collected from the outbreak among cattle in 

1994-1995 in addition to other cattle isolates (n = 32) from 1984–1999 were analysed. In addition, 

isolates (n = 28) from imported products, feedstuff, fur animals and others, and sewage water were 

also analysed. The isolates from humans provided by the National Public Health Institute were 

classified either as domestic (a patient had not been abroad during the month preceding the 

infection) or foreign. Thirty of the human isolates had been associated with recent foreign travel. 

Isolates from sporadic cases of domestic origin from 1996 and 1997 and three isolates from an 

outbreak with over 50 human cases in 1999 were also analysed. All isolates had been serologically 

confirmed to be S. Agona and stored at -70°C, except for the isolates obtained in the 1980s, which 

had been stored on egg agar slopes prior to analysis. 
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4.1.3 S. Typhimurium DT1 isolates (IV) 

The isolates (total n = 255) were obtained from the National Public Health Institute, Helsinki, 

Finland (n = 140) and from the Finnish Food Safety Authority Evira (EELA is a part of it), Helsinki, 

Finland (n = 115). The isolates were obtained from humans, animals, feed, or the environment 

from 1972 to 1999. They were chosen among all available isolates of S. Typhimurium DT1 based 

on details of origin (animal species, date or year of isolation, geographical location) in order to get 

as representative a material as possible. In practice the isolates had to be widely distributed both 

in time and location. The isolates from humans from 1972 to 1999 were classified either as 

domestic (a patient had not been abroad during the month preceding the time when the specimen 

was taken) or foreign based on the recent travelling history of the patient. However, in judging 

whether the origin of an isolate is domestic or foreign in origin, there is always the risk of 

misclassification. Most of the isolates of foreign origin were from countries to which tourism from 

Finland is common. Travellers might have already had the Salmonella bacteria when leaving home 

for the respective destination. The Salmonella isolation might have been carried out after returning 

to Finland, and the isolate threfore classified as ‘foreign’ based on the basis of recent foreign 

travel. Such a misclassification might be easier to detect as S. Typhimurium DT1 is rare as an 

infection source in many countries. The domestic isolates were isolates obtained from outbreaks 

(for the period 1972 to 1988). The other isolates were obtained from outbreaks or sporadic cases 

(1990 to 1999). In either case, all isolates had been serologically confirmed to be S. Typhimurium, 

phage typed as DT1 and stored at -70°C, except for the isolates obtained in the 1980s, which had 

been stored on egg agar slopes prior to analysis. 

 

4.2 METHODS 

 

4.2.1 Pulsed-field gel electrophoresis (PFGE) (I-IV) 

 
Preparation of PFGE-samples (I-IV). Chromosomal DNA was prepared in gel blocks as described 

previously by Birren and Lai (1993), but with some modifications. Bacteria were harvested from 1.1 

ml of an overnight culture. Agarose (1% low melting) was used for the plugs (InCert Agarose, FMC 

BioProducts, Rockland, ME, USA). Lysozyme treatment at 37°C for 4 hrs was followed by 

proteinase K at 50 °C for 20 hrs. The plugs were stored in 0.5 M EDTA at 4 °C. 

 

XbaI and S1-nuclease digestion for PFGE (I-IV). The agarose plugs were dialysed against 10 mM 

Tris, pH 7.4, 1 mM EDTA, 50 mM NaCl before treatment. Restriction enzyme and S1-nuclease 

analyses were performed using slices from the same plugs. The slices were digested at 37°C for 

16 - 18 hrs, with 20 units of XbaI in the reaction buffer supplied by the manufacturer (New England 
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Biolabs, Beverly, MA, USA). The reaction was stopped with 0.5 M EDTA, pH 8.0. To linearise the 

plasmids (Barton et al 1995) other slices from dialysed plugs were treated with 2 units of S1-

nuclease in the reaction buffer supplied with the enzyme at 37°C for 45 min (Promega, Madison, 

WI, USA; code M576/1,2), after which EDTA was added. 

 

SfiI and SpeI digestion for PFGE (S. Infantis) (I,II). In XbaI-PFGE, there was only a one-band-

difference between the two most common PFGE profiles. Therefore additional analyses were 

performed for isolates of these two profiles. The slices were digested with 20 units of SfiI at 50°C 

for 16 - 18 hrs or 12 units of SpeI at 37°C for 16 - 18 hrs in the reaction buffer supplied by the 

manufacturer (New England Biolabs, Beverly, Mass., USA). 

 

NotI, SpeI and BlnI digestion for PFGE (S. Agona) (III). The slices were digested with either 20 

units of NotI or 12 units of SpeI in the reaction buffer supplied by the manufacturer (New England 

Biolabs, Beverly, MA, USA) at 37°C for 16 - 18 hrs. Digestion with 5 units of BlnI was carried out in 

the reaction buffer supplied by the manufacturer (Boehringer Mannheim GmbH, Mannheim, 

Germany) at 37°C for 4 hrs. 

 

SpeI and BlnI digestion for PFGE (S. Typhimurium DT1) (IV). The slices were digested with 10 

units of SpeI in the reaction buffer supplied by the manufacturer (New England Biolabs, Beverly, 

Mass., USA) at 37°C for 16 - 18 hrs. Digestion with 10 units of BlnI was carried out in the reaction 

buffer supplied by the manufacturer (Boehringer Mannheim GmbH, Mannheim, Germany) at 37°C 

for 4 hrs. 

 

Performing of PFGE (I-IV).  PFGE was performed using clamped homogeneous electric field 

(CHEF) electrophoresis (CHEF-DRIII, Bio-Rad, Melville, NY). The agarose slices were loaded into 

1 per cent agarose gels (FastLane, FMC Bioproducts, Rockland, BM, USA) and subjected to 

electrophoresis in 0.5 x Tris-borate-EDTA buffer (Sambrook et al 1989) at 14°C for 19 hrs, pulse 

ramp time 2 - 30 sec (XbaI and S1-nuclease) (S. Infantis), voltage 6 V/cm, reorientation angle 

120°. The pulse ramp time was 10 - 30 sec for S. Agona and S. Typhimurium (XbaI and S1-

nuclease). The pulse ramp time was 1 - 20 sec for the NotI and SpeI digested plugs and 10 - 40 

sec for the BlnI digested plugs (S. Agona). The pulse ramp time was 5 - 15 sec for the SpeI 

digested plugs and 10 - 40 sec for the BlnI digested plugs (S. Typhimurium). The pulse ramp times 

used for the few isolates of S. Infantis digested with SfiI were 0.5 - 5 sec for 16 hrs and 1 - 13 sec 

for 17.5 hrs, whereas the time intervals for SpeI were 2 - 30 sec for 19 hrs and 1 - 13 sec for 17.5 

hrs. 
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All the gels were stained with 0.5 μg/ml ethidium bromide and photographed by a Polaroid MP-

reprocamera. Bacteriophage lambda concatamers (New England Biolabs, Beverly, MA, USA) were 

used as molecular weight standards. The molecular weights of the linearised plasmids and 

restriction fragments were determined by plotting the distance of migration against the log10 of the 

molecular size fragments (Sambrook et al 1989; Tenover et al 1995). DNA profiles differing by one 

or more DNA fragments larger than 125 kb were assigned a pulsed-field (pf) type number. When 

discrimination of the XbaI-PFGE analysed isolates was based on all visible DNA fragments, 

regardless of their size and intensity, the pf-types could be further divided into plasmid subtypes 

(S. Infantis) (I, II). DNA profiles differing by one or more DNA fragments were assigned a pulsed-

field (pf) type number (XbaI restriction) or letter (other enzymes) (S. Agona) (III). DNA profiles 

differing by at least one fragment larger than 20 kb were assigned a PFGE profile number (S. 

Typhimurium) (IV). The coefficient of similarity values (F) between the pf-types were calculated as  

described (El-Adhami et al 1991). After visual analysis of the PFGE profiles, a computer program 

for analysis of electrophoretic patterns (GelCompar, Applied Maths, Kortrijk, Belgium) was used to 

generate dendrograms (Vauterin and Vauterin 1992). 

 

4.2.2 Plasmid analyses (I-IV) 
 

Plasmids smaller than 20 kb were isolated by the alkaline lysis method as described (Grinsted and 

Bennett 1988). The preparations were analysed in 0.9 per cent agarose gels (SeaKem LE, FMC 

Bioproducts, Rockland, ME, USA), 4 V/cm, for 1.5 h in 1 x Tris-acetate-EDTA buffer (Sambrook et 

al 1989) and the gels were stained with 0.5 μg/ml ethidium bromide. Plasmids larger than 20 kb 

were analysed by pulsed-field gel electrophoresis (PFGE). The PFGE agarose plugs were treated 

with S1-nuclease, which linearises plasmids (Barton et al 1995) thereby making plasmid analysis 

and size determination easier. S1-nuclease treatment was carried out in the reaction buffer 

supplied with the enzyme (Promega, Madison, WI, USA; code M576/1,2) at 37°C for 45 min. The 

analyses were performed using slices from the same agarose plugs used for chromosomal 

profiling by PFGE (see above). Escherichia coli strains V517 (35.6, 4.8, 3.7, 3.4, 1.8, 1.4 MDa) 

(Macrina et al 1978) and 39R861 (98.0, 42.0, 23.9, 4.6 MDa) (Threlfall et al 1986b) were used as 

plasmid reference strains in all alkaline lysis isolation procedures. 

 

For restriction fingerprinting (S. Infantis) (I) plasmid preparations were treated with 10 units of 

HindIII, SfiI or XbaI restriction enzyme (New England Biolabs, Beverly, MA, USA) and analysed in 

1 per cent PFGE agarose gels, with the pulse ramp times of 0.1 - 2.0 sec, 9 V/cm, at 14°C, 120° 

reorientation angle, in 0.5 x Tris-borate-EDTA buffer for three hrs. 
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4.2.3 Ribotyping and IS200-typing (S. Infantis, S. Typhimurium DT1) (I, II, IV) 
 

Ribotyping and IS200-typing were performed as described by Pelkonen et al (1994). Bacterial DNA 

was isolated as described previously (Stull et al 1988) and digested with BanI; EcoRI digestion 

(New England Biolabs, Beverly, MA, USA) was used to confirm some IS200-types (Pelkonen et al 

1994) (S. Infantis) (I, II). Bacterial DNA was digested with BamHI, BanI, PstI, PvuII, or SmaI (New 

England Biolabs, Beverly, MA, USA). PvuII, which lacks restriction sites within the 16S rrn gene, 

provided the optimal resolution of bands and was used for ribotyping. PstI, which lacks restriction 

sites within IS200, provided the clearest resolution of IS200 bands and was used for the IS200 

analysis (S. Typhimurium) (IV). For ribotyping, a 1.3 kb PCR product of the Escherichia coli 16S 

rrnB operon was amplified and purified as described previously (Pelkonen et al 1994). For IS200-

typing, a 557-bp PCR product of the IS200 insertion sequence was amplified from our own 

Salmonella serovar Infantis isolate K1469 with the primer pair 5’-CCTAACAGGCGCATACGATC-3’ 

and 5’-ACATCTTGCGGTCTGGCAAC-3’ (Burnens et al 1996). A 30-cycle programme (94°C for 1 

min, 54°C for 0.5 min and 72°C for 2 min) was used. The PCR product was electrophoresed 

through 1 per cent agarose gel and purified with a QIAquick-spin extraction kit (Qiagen, 

Chatsworth, CA, USA). The 16S rRNA and IS200 probes were labelled with DIG-11-dUTP by using 

a DIG-High Prime Labeling Kit (Boehringer Mannheim GmbH, Mannheim, Germany).  

 

Two μg of Salmonella DNA was digested with restriction endonucleases (New England Biolabs, 

Beverly, MA, USA) and electrophoresed through 0.8 per cent agarose gel in 1 x Tris-acetate-EDTA 

buffer. Denatured DNA was transferred to a nylon membrane (Hybond-N, Amersham International 

PLC, Amersham, UK) in 20 x SSC (Sambrook et al 1989) and fixed to the membrane using 

microwaves (Angeletti et al 1995). Hybridisation and detection were performed with the DIG 

Nucleic Acid Detection Kit (Boehringer Mannheim GmbH, Mannheim, Germany).  

 

The ribo- and IS200-types for S. Infantis were named as previously (Pelkonen et al 1994), with 

additions of new profiles (II). Weak bands detected by ribotyping differed between the gels, 

whereas strong bands were fully reproducible. Therefore only strong bands were scored. For 

IS200, the bands detected were fully reproducible. DNA profiles differing by at least one band were 

assigned a profile name (capital letter) (S. Typhimurium) (IV). After visual analysis of the profiles, a 

computer program for analysis of electrophoretic patterns (GelCompar, Applied Maths, Kortrijk, 

Belgium) was used to generate the dendrograms (Vauterin and Vauterin 1992). 
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4.2.4 Other analyses (III, IV) 

 

Polymerase chain reaction (PCR) for detection of IS200 (S. Agona) (III). The primer pair 5’-

CCTAACAGGCGCATACGATC-3’ and 5’-ACATCTTGCGGTCTGGCAAC-3’ (Burnens et al 1996) 

and a 30-cycle program (94°C for 1 min, 54°C for 0.5 min and 72°C for 2 min) was used to amplify 

a 557-bp PCR product of the IS200 insertion sequence. S. Infantis K1469 was used as a positive 

control. 

 

Testing for microbial drug resistance (S. Agona) (III). Agar diffusion test was performed according 

to the National Committee for Clinical Laboratory Standards (NCCLS) (current name Clinical and 

Laboratory Standards Institute, CLSI) with Oxoid disks (Oxoid, Hampshire, UK) using Mueller-

Hinton agar (Becton Dickinson and Company, Cockeysville, MD, USA). The disks contained 

ampicillin 10 μg, cephotaxime 30 μg, chloramphenicol 30 μg, ciprofloxacin 5 μg, enrofloxacin 5 μg, 

streptomycin 10 μg, sulfamethoxazole-trimethoprim 25 μg and tetracyclin 30 μg. 

 

Detection of the spvC virulence gene by PCR (S. Typhimurium DT1) (IV). PCR was performed 

using DyNAzyme DNA Polymerase kit (Finnzymes, Espoo, Finland) according to the 

manufacturer's guidelines. The reaction contained 20 pmol of the primers spvc-F ACT CCT TGC 

ACA ACC AAA TGC GGA and spvc-R TGT CTC TGC ATT TCG CCA CCA TCA (Chiu and Ou 

1996). Bacterial suspensions were lysed at 95°C for 5 minutes and amplified over 25 cycles at 

94°C for 1 min, at 56°C for 1 min and at 72°C for 1 min in a UNO II thermocycler (Biometra). The 

PCR product was analysed in 1.5 per cent agarose gels (Seakem LE, FMC Bioproducts, Rockland, 

ME, USA) with 0.5 μg ethidium bromide per ml at 4.7 V/cm for 50 min in 1 x Tris-acetate-EDTA 

buffer (Sambrook et al 1989). To confirm the presence of the serovar specific plasmid, the spvC 

gene was localized to a plasmid by hybridization. The 571 bp PCR product was amplified from a 

mixture of the S. Typhimurium isolates: DT104 (IH 59841), DT12 (IH 68594, IH 69493) and DT120 

(2671), then electrophoresed through 1.5 per cent agarose gel and purified with a High Pure PCR 

Product Purification kit (BoehringerMannheim GmbH, Mannheim, Germany). The PCR product 

was labelled with DIG-11-dUTP by using a DIG-High Prime Labeling Kit (Boehringer Mannheim 

GmbH, Mannheim, Germany) and used as a probe for hybridization of S1-nuclease digested 

plasmids of S. Typhimurium DT1. These plasmids were transferred to nylon membranes after 

PFGE. Hybridization and detection were performed according to the DIG Nucleic Acid Detection Kit 

instructions (Boehringer Mannheim GmbH, Mannheim, Germany). 
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5. RESULTS 

 

5.1 S. Infantis (I, II) 
 

Analysis of the feedstuff-related outbreak in 1995 (I). DNA profiles differing by one or more DNA 

fragments larger than 125 kb were assigned a pulsed-field (pf) type number. When discrimination 

of the XbaI-PFGE analysed isolates was based on all visible DNA fragments, regardless of their 

size, the pulsed-field (pf) types could be further divided into plasmid subtypes (data not shown). 

The feed samples from 1995 (n=23) were all found to be of the same plasmid type. This subtype of 

the main pf-type pf1 (I: table 2) was designated number 39 and it was regarded as the feedstuff-

related plasmid subtype. Its XbaI-macrorestriction profile had an intensive band of approximately 

60 kb in size. The plasmid type pf1/39 was found on 74 cattle farms and in 23 feed samples in 

1995, but not among samples taken from the earlier period 1992 to 1994. Similarly, plasmid type 

pf1/39 was not obtained in isolates from Finnish broiler chickens (300 isolates, from 1983 to 1995) 

nor human isolates (42 isolates, 1985 to 1994) (data not shown). Analysis with S1-nuclease 

revealed plasmid type pf1/39 typically to contained two plasmids of approximately 90 and 60 kb in 

size (I: figure 1). Moreover, 69 of the 74 farm isolates of plasmid type pf1/39 contained two 

plasmids of 90 and 60 kb as revealed by S1-nuclease analysis and alkaline lysis. Only five of the 

isolates had a different plasmid profile. They all contained the 60 kb plasmid, but other plasmids of 

90, 80, 70 or 40 kb as well. 

 

Among cattle isolates from the years 1994 and 1995, we found five plasmid subtypes of the 

pulsed-field type pf1 that in their XbaI-macrorestriction profile strongly resembled plasmid type 

pf1/39. No resembling plasmid subtypes were found in 1992 and 1993. The plasmid subtypes were 

respectively designated the numbers 43, 44, 45, 46 and 71. They all had the 60 kb band in XbaI-

PFGE, typical of plasmid type pf1/39, in addition to other intensive bands (I: figure 1). S1-nuclease 

analysis revealed that they shared the 60 and 90 kb plasmids with plasmid type pf1/39, but had 

other plasmids of 105, 40 or 30 kb as well (I: figure 1). 

 

The similarity of the plasmid types that resembled the feed-related plasmid type pf1/39 was studied 

by fingerprinting of plasmid DNA. We analysed all the strains (n = 20; 2 from 1994, 12 from 1995 

and 6 from 1996) of plasmid types pf1/43, pf1/44, pf1/45, pf1/46 and pf1/71, and the feedstuff 

isolates of plasmid type pf1/39 (n = 23). The plasmids were isolated by alkaline lysis and the 

similarities of the plasmids were analysed by restriction fingerprinting using HindIII, SfiI or XbaI 

enzymes. The best results regarding the number of easily discriminated fragments were obtained 

with HindIII (I: figure 2), but the results with the other enzymes were in agreement with those of 

HindIII (data not shown). The plasmids of the types pf1/43, pf1/44 and pf1/46 shared most of the 
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restriction fragments with type pf1/39. In contrast, the isolates of type pf1/45 for the years 1994, 

1995 and 1996 differed from each other. The isolates for 1994 and 1996 differed from type pf1/39, 

whereas the isolates of plasmid type pf1/45 obtained from the farms that had received the 

contaminated animal feed in 1995, shared most of their restriction fragments with type pf1/39. The 

plasmids in type pf1/71 were of the same size as in type pf1/39, but the restriction profile differed 

with all three enzymes from that of type pf1/39. 

 
The feedstuff-related plasmid type pf1/39 was detected on 12 farms in 1996, and the related 

plasmid types pf1/43, pf1/44, and pf1/45 were recorded for 2, 2, and 6 farms, respectively. Plasmid 

type pf1/45 was found on two farms in 1997 and one farm in 1998. In total, the plasmid types 

pf1/39, pf1/43, pf1/44 and pf1/45 accounted for 17 per cent (22/131), 11 per cent (2/18) and 5 per 

cent (1/22) of the pf-types in the analysed isolates from 1996, 1997 and 1998, respectively. These 

profiles were not detected in 1999 or 2000, but in 2001, plasmid type pf1/39 was seen on one farm 

(data not shown). 

 

PFGE profiles obtained by XbaI (II). Among the 588 analysed cattle isolates obtained from 478 

farms over the 1985 to 2003 period, for bands larger than 125 kb, 51 different XbaI-

macrorestriction profiles (pulsed-field, pf-types) were determined (II: table 2; figure 3). The 

predominant macrorestriction profile in cattle was pf1, detected in 68 per cent (335/494) of the 

isolates. The most common pf-types pf1, pf2 and pf3 accounted for 80 per cent (396/494) of the 

profiles detected (II: table 2). The coefficient of similarity (F) values ranged from 0.58 to 0.95 (II: 

figure 3). 

 

Among the analysed cattle farm isolates, 41, 17 and 6 plasmid subtypes of the pf-types pf1, pf2 

and pf3, respectively, were determined and 78 different plasmid subtypes among the 47 other pf-

types. When all bands larger than 20 kb were regarded, 142 different profiles were detected 

among the analysed cattle farm isolates. When the cattle transport vehicles and slaughter house 

hygiene samples (n= 48) were also included, and all bands larger than 20 kb, 11 additional profiles 

were determined; 6 of them were plasmid subtypes of the most commonly seen profile pf1. If only 

those bands larger than 125 kb were regarded, three additional pf-types were recorded (namely 

pf53, pf100 and pf140) (data not shown). 

 
Plasmid profiles (II). The S1-nuclease analysis was carried out on 77 per cent (398/520) of the 

XbaI-PFGE analysed cattle farm isolates and 88 per cent (352/398) of the analysed isolates were 

found to harbour plasmids in a size range of 20 to 125 kb (data not shown). Plasmids were more 

common in the isolates from 1995 to 2002 than in isolates taken earlier. 
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Ribo- and IS200-types (II). Fiftyseven isolates were analysed by ribotyping and IS200-typing: 25 

isolates from 1985 to 1987, 19 isolates from 1992 to 1995, and 13 isolates from 1999 to 2002. 

Among all the analysed isolates (n=57), five different ribo/IS200-types were detected (data not 

shown). The most common type was 1A, found in 89 per cent (51/57) of the isolates. The isolates 

obtained over the 1985 to 1987 period (n=25) had the ribo/IS200-types 1A (n=21), 1Q (1), 1S (1) or 

1T (2) and were of the XbaI-macrorestriction profiles pf1 (15 isolates with ribo/IS200-type 1A and 

one isolate each with ribo/IS200-type 1Q or 1S), pf2 (2 isolates, 1A), pf153 (one isolate each of 1A 

and 1T), pf55 (1 isolate, 1T) and pf147, pf152 or pf517 (one each, all 1A). For the 1992 to 2002 

period, 30 isolates had the ribo/IS200-type 1A and were of the pf-types pf1 (19 isolates), pf2 (4), 

pf35 (2), pf36, pf66, pf95, pf118 or pf192 (one each). Two isolates had the ribo/IS200-type 7O; 

both were of pf-type pf1. Ribo/IS200-types O, Q, S and T differ from profile A, which has bands of 

0.6, 1.6 and 2.2 kb (Pelkonen et al 1994), by having one additional band of approximately 3 kb in 

size (profile O), one additional band of 3.6 kb (Q), one additional band of 1.8 kb (S), or two 

additional bands of 3.6 and 4 kb (profile T) (data not shown). Profile 7 differs from profile 1 by 

having one additional band approximately 4 kb in size (data not shown). 

 

Follow-up on the stability of the XbaI-macrorestriction profiles on farms during the infection (II). 
From 142 farms, two or more S. Infantis isolates were obtained during the eradication of the 

infection. The typing results were analysed in three groups according to the number and timely 

distribution of the available isolates. Data from 26 farms were analysed in more than one group as 

the farms had several isolates both from the same year and different years.  

From the same year, two isolates were available from 64 farms, and three or four isolates from 14 

farms. The time interval between the isolates varied from 0 to 9 months. For the farms with the 

isolates in the same year (n=78), the same pf-type was detected in 13 (17%), and both the same 

pf-type and the same plasmid subtype was observed for 50 (64%) of the 78 farms. For 9 (14%) of 

the 64 farms that had two isolates analysed, the isolates had different pf-types. For 6 (43%) of the 

14 farms with three or four isolates analysed, both the same pf-type and a different pf-type was 

seen. For 68 (87%) of the 78 farms the same pf-type was seen in at least two of the analysed 

isolates (data not shown). 

From two different years, two isolates were available from 52 farms and three to five isolates from 

16 farms. The time interval between isolation varied from one to three years. For the farms with 

isolates available from two different years (n=68), the same pf-type was seen on 25 (37%), and 

both the same pf-type and the same plasmid subtype was seen on 21 (27%) of the 68 farms. For 

15 (29%) of the 52 farms with two isolates analysed, the isolates had different pf-types. For 5 

(31%) of the 16 farms with three to five isolates analysed, both the same pf-type and a different pf-

type was seen. For 52 (76%) of the 68 farms the same pf-type was seen in at least two of the 

analysed isolates (data not shown).  
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For the farms with isolates obtained over three (16 farms) or four (6 farms) different years, the 

same pf-type was detected on 8 (36%), and both the same pf-type and the same plasmid subtype 

was determined on 3 (14%) of the 22 farms. For 9 (41%) of the farms, both the same pf-type and a 

different pf-type was found. On 20 (91%) of the 22 farms the same pf-type was seen in at least two 

of the analysed isolates (data not shown). 

 

The within farm-differences in the XbaI-banding patterns of successive isolates ranged from one to 

five bands. The difference in banding pattern for isolates from the same farm with different pf-types 

(data not shown) was one band for 32 per cent (10/31) and two bands for 55 per cent (17/31) of 

the analysed farms. For isolates from the same year, 42 per cent (5/12) had only a one-band 

difference and 33 per cent (4/12) had a two-band difference, and one isolate each had a three-, 

four-, or five-band difference. For isolates from two different years, 26 per cent (5/19) had a one-

band difference, 68 per cent (13/19) a two-band difference and one isolate a three-band difference. 

 

The regional distribution of certain PFGE profiles (II). When looking at the regional distribution of 

the XbaI-PFGE analysed isolates, which is representative of the regional distribution of the S. 

Infantis positive farms, certain macrorestriction profiles (pf-types, bands larger than 125 kb) and 

plasmid subtypes seem typical of certain municipalities. These profiles (pf1 and its plasmid 

subtypes 1/24, 1/34 and 1/37; pf2 and pf3) are common among cattle overall (data not shown). 

They are especially common among the analysed faecal isolates obtained over 1995 and 1996 in 

Kälviä (pf1/24 in all four analysed isolates), Ilmajoki and Vihanti (pf1/24; in 3 of 6 and 3 of 8 

analysed isolates, respectively), Teuva (pf1/37; 5/23), Kaustinen (pf2; 6/13) and Himanka (pf3; 

3/4). All municipalities mentioned, except Vihanti, are located in the former province of Vaasa. In 

contrast, Vihanti is in the province of Oulu. 

 

5.2 S. Agona (III) 

 

PFGE profiles obtained by XbaI. Digestion of all 110 isolates with XbaI yielded fragments ranging 

from 40 to 600 kilobases (kb) and yielding 39 different pf-types (III: table 2; figure 2). Among the 69 

nonhuman and the 41 human isolates, 19 and 23 pf-types were detected (III: table 2). Of the 39 pf-

types, 31 were recorded in only one or two isolates. The most common profile was pf1 (22 

isolates) followed by pf21 (13 isolates), pf22 (9 isolates), pf5 (8 isolates) and pf19 (7 isolates). 

These five types represented 54 per cent (59 isolates) of the 110 isolates studied. Of these, pf5 

was detected in only the human isolates, and the other common pf-types in nonhuman isolates 

(except for one human domestic isolate of pf1). Of the 39 pf-types, 14 were seen in isolates of 

foreign origin only, 5 were seen in human isolates of foreign and domestic origin, and 3 were seen 
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in human isolates of domestic origin only (III: table 2). The overall differences between pf1 and the 

38 other pf-types obtained by XbaI-digestion (pf1 to 40) gave Dice similarity coefficient values 

larger than 0.6 (III: figure 2).  

 

XbaI-profiles pf1 and pf2 were associated with the outbreak among cattle farms in 1994 and 1995, 

whereas profile pf39 was associated with the outbreak among humans in 1999. Only one isolate 

from humans had the same profile as that for the cattle outbreak but none of the cattle isolates 

belonged to pf39 (III: table 2). Pf1 and pf2 differed from each other only by one intensive band of 

approximately 100 kb, and S1-nuclease analysis revealed that pf2 contained a plasmid of the 

same size (III: table 3). Pf39 differed from pf1 by 9 bands (III: figure 2). 

 

PFGE profiles obtained by BlnI, NotI and SpeI. Since the overall differences between the XbaI-

profiles were not large (III: figure 2), one isolate of each XbaI-profile (III: table 2), and additional 

isolates of the most common XbaI-profile, pf1, were analysed by other enzymes as well (III: table 

3). Among the 52 isolates analysed, digestion with BlnI yielded fragments of 40 to 600 kb (data not 

shown) and 28 different types were designated with the letters a to w. Moreover, NotI yielded 

fragments of 10 to 250 kb (data not shown) and 21 types (N1 to N21). In contrast, SpeI yielded 

fragments of 10 to 400 kb (data not shown) and 21 different types (A to T) among the 45 analysed 

isolates. 

 

Although the number of profiles obtained by digestion with any of these enzymes was not as large 

as the number obtained by digestion with XbaI, most of the BlnI-, NotI- and SpeI-profiles were only 

found in one or two of the isolates analysed (III: table 3). However, the XbaI-profiles seen in cattle 

isolates obtained for the years 1994, 1995, and 1997 (profile pf1, pf2, pf3 and pf4 and profile pf21, 

pf22 and pf23) shared the SpeI-profiles A and J, respectively (III: table 3). The differences between 

these two SpeI-profiles, and those between the BlnI- and NotI-profiles (III: table 3) detected in 

these cattle isolates, are minor (a one to four band difference) 

 

In the isolates obtained from the outbreak in cattle (XbaI-profiles pf1 and pf2) and those of the 

human outbreak (pf39) (III: table 3), the BlnI-profile a1 resembled BlnI-profile a though it had an 

additional band (data not shown). There was also a one-band-difference between the SpeI-profiles 

A and AD and NotI-profiles N1 and N7 (data not shown). 
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Plasmid profiles. S1-nuclease analysis combined with PFGE revealed that 35 per cent (38/110) of 

the strains harboured plasmids larger than 20 kb (data for representative strains are shown in III: 

table 3). Smaller plasmids with six different profiles (profiles a to f) were detected in 15 per cent 

(16/110) of the isolates (III: table 3). 

 

Possession of IS200. The 557 bp product of IS200 for the S. Agona isolates was not amplified. A 

strong and clear band of that size was always amplified from the control strain K1469. 

 

Antimicrobial resistance patterns. Of the 73 domestic isolates, only one isolate from a cattle farm 

(strain 2476) that was recovered in 1997 showed resistance to any of the antimicrobials tested 

(chloramphenicol and tetracycline; III: table 3). In comparison, five of the 37 foreign isolates were 

resistant, with resistance to tetracycline and streptomycin being the most common (III: table 3). 

 

Combination of profiles. When representative isolates of each of the 39 XbaI-profiles were 

analysed with other restriction enzymes (III: table 3), the relatively large number of different profiles 

obtained with the additional enzymes (28, 21 and 21 profiles, for BlnI, NotI and SpeI, respectively) 

supports the existence of at least minor differences between the 39 XbaI-profiles. The isolate 

representative of the human outbreak (XbaI-profile pf39) did not seem to be related to any of the 

other isolates tested, whereas two groups (groups A and J) were formed among the cattle isolates 

by SpeI digestion. Large plasmids were seen in 33 per cent (13/39) and small plasmids in 20 per 

cent (8/39) of the XbaI-profiles, but there seemed to be no relationship between the PFGE profiles 

and plasmid profiles. All drug-resistant strains seemed to harbour large plasmids, thereby 

indicating the possibility of plasmid-mediated drug resistance in the analysed isolates. Due to the 

large number of profiles obtained with all restriction enzymes used in the study and the lack of an 

obvious relationship between the PFGE and plasmid profiles, the material could not be divided into 

a few clear combination profile groups. 
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5.3 S. Typhimurium DT1 (IV) 
 

PFGE profiles obtained by XbaI. Digestion of all 255 isolates with XbaI yielded 38 different XbaI-

PFGE macrorestriction profiles differing by one or more bands. The number of fragments 

generated varied between 10 and 14 in the size range of 20 to 500 kb (IV: figure 1). The most 

common PFGE profile (profile 10) was detected in 125 of 255 isolates (49%) (IV: figure 1). This 

profile was recorded in human isolates obtained from the outbreaks in the 1980s and 1990s, and in 

sporadic cases (IV: table 2). Other common XbaI-profiles were 11, 20, 50 and 30, which 

represented 31, 17, 12 and 10 isolates, respectively (IV: figure 1). A majority of the analysed 

isolates, 76 per cent (195/255) had one of the five most common profiles. All other profiles were 

seen in less than 10 isolates each, and of the 38 XbaI-PFGE profiles, 27 (71%) were represented 

by only one or two isolates (IV: figure 1). Of the seven XbaI-profiles (10, 20, 21, 22, 23, 26 and 60) 

detected in the 20 human isolates of foreign origin, only two (21 and 22) were not seen among the 

domestic isolates (IV: table 2). The Dice coefficient of similarity (F) values between the 38 XbaI-

PFGE profiles varied between 0.56 and 0.96 (IV: figure 1). Profiles 20 to 27 formed a cluster which 

differed from profile 10 and others at a level of 0.75.  

 

PFGE profiles obtained by BlnI and SpeI. Isolates representing the 38 XbaI-PFGE profiles and 

different sources were analysed using BlnI and SpeI (IV: table 3). Among these 68 isolates, 

digestion with BlnI yielded 25 different PFGE profiles. The number of fragments generated varied 

between 7 and 10 in the size range of 40 to 600 kb. The F values between the BlnI-PFGE profiles 

ranged from 0.43 to 0.93 (data not shown). Profile 7 was the most common, detected in 49 per 

cent (33/68) of the analysed isolates, and among 18 different XbaI-profiles. Digestion with SpeI 

yielded 29 PFGE profiles. The number of fragments generated varied between 17 and 21 in the 

size range of 20 to 300 kb, and the F values between 0.59 and 0.97 (data not shown).  Profile 1 

was the most common, detected in 29 per cent (20/68) of the analysed isolates, and among seven 

XbaI-profiles. 

 
Ribotypes and IS200-types. All the 52 isolates analysed (IV: table 4) belonged to only one ribotype 

as assessed by PvuII restriction (data not shown). Twelve different IS200-types (A to M) were 

detected using PstI (IV: table 4; figure 2). The number of IS200 copies varied between 8 and 14 

and only one copy in a 4.3 kb fragment was common to all PstI-profiles (IV: figure 2). Profile D was 

the most common in both the 1980s (8/15 isolates, 53%) and 1990s (25/37 isolates, 68%), and 

appeared in isolates of various origins (IV: table 4). The second most common profile, A, was 

recorded in 17 per cent (9/52) of the isolates. It occurred only in isolates of human or cattle origin 

(IV: table 4). Two clusters of IS200-types were recorded. In dendrogram profile A was closely 
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related to C, whereas seven profiles, F, G, H, I, K, L, and M, were related to profile D (data not 

shown). 

 

Plasmid analyses. All 255 S. Typhimurium DT1 isolates were analysed by S1-nuclease PFGE 

whereas 173 isolates were analysed by alkaline lysis. All isolates of the less common PFGE 

profiles detected by XbaI (35 profiles, 82 isolates) and 91 isolates of the three most common XbaI-

profiles (profile 10, 62 isolates; profile 11, 17 isolates; profile 20, 12 isolates) representing different 

origin of isolation were analysed by alkaline lysis. All isolates harbouring plasmids larger than 20 

kb, as shown by S1-nuclease, and all ribo- and IS200-typed isolates were analysed by PCR for the 

presence of the spvC gene (127 isolates). To confirm the presence of a spv plasmid, 20 spvC PCR 

positive and eight PCR negative isolates were analysed by hybridization. 

 

S1-nuclease analysis combined with PFGE determined that 41 per cent (104/255) of the isolates 

harboured plasmids in a size range (50 to 211 kb) which might contain the virulence plasmid (data 

not shown). Of these 104 isolates, 26 per cent were positive for spvC by PCR (data not shown). Of 

the 52 ribo- and IS200-typed isolates, 23 did not harbour large plasmids and were negative for 

spvC by PCR (data not shown). All isolates (n=10) of the IS200-types A or C and 27 isolates of the 

XbaI-profiles 20, 21, 23, 24, 25, 26 or 130 had the spvC gene. In contrast, isolates of the IS200-

types D, E, F, G, H, I, K, L and M did not have the spvC gene (data not shown). The spvC probe 

hybridized to plasmids in a size range of 90 to 108 kb in all of the spvC PCR positive analysed 

isolates (20 of 27). The probe did not hybridize to plasmid-free PCR negative isolates of IS200-

types D (4 isolates), B (1) or I (1) or to two isolates of XbaI-profiles 31 and 51 (data not shown). 

Based on S1-nuclease analysis and spvC PCR in total 11 per cent (27/255) of the S.Typhimurium 

DT1 isolates had the serovar specific plasmid. 

 

Plasmids larger than 108 kb were present in only three isolates; one each of the XbaI-PFGE 

profiles 10, 30 and 60. Only 8 per cent (10/125) of the isolates of the most common XbaI-PFGE 

profile 10 harboured plasmids larger than 20 kb. The other isolates harboured large plasmids in 72 

per cent (94/130) of the isolates (data not shown). 

 

Plasmids smaller than 20 kb were seen in 28 per cent (48/173) of the analysed isolates (data not 

shown). Of the analysed isolates of the most common XbaI-profile 10, 15 percent (9/62) contained 

small plasmids. Small plasmids were present in 90 percent (28/31) of the isolates of the XbaI-

profiles 31, 40, 50, 51, 60 and 61 (data not shown). 
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Neither large nor small plasmids were common in the analysed human isolates of domestic or 

foreign origin; 29 per cent (35/120) of the domestic and 30 per cent (6/20) of the foreign isolates 

contained large plasmids and 26 per cent (18/70) of the domestic and 13 per cent (2/16) of the 

foreign isolates harboured small plasmids (data not shown). Plasmids were more common in the 

analysed domestic isolates from poultry, where 64 per cent (23/36) harboured large plasmids and 

52 per cent (11/21) harboured small plasmids. Plasmids were also more common among the 

analysed domestic isolates from cattle, where 56 per cent (31/55) harboured large plasmids. Small 

plasmids were seen in 26 per cent (12/47) of the analysed cattle isolates (data not shown). Overall, 

small plasmids seemed to be less common in the isolates from the 1980s, whereas large plasmids 

seemed more common in these older isolates. 

 
Combination of profiles. The compilation of the XbaI-, BlnI- and SpeI-PFGE results gave: 52 

different combination profiles among the 68 analysed isolates, 48 profiles among the 61 domestic 

isolates and 7 profiles among the foreign isolates (IV: table 3). Some combination profiles, such as 

XbaI10-BlnI7-SpeI1 and XbaI50-BlnI7-SpeI7, were common for different infection sources. 

Dendrogram analysis was done separately for each of the three enzymes used for PFGE. This 

revealed two major clusters among the XbaI-, BlnI- and SpeI-PFGE profiles (IV: figure 1, data not 

shown). XbaI-profiles 20 to 27 formed one cluster and the other profiles (except profile 130) 

another (IV: figure 1). The BlnI-profiles 8, 10, 11, 18, 28 and 184, and SpeI-profiles 2, 6, 13, 20 and 

21 also formed one cluster (data not shown). 

 

When the PFGE results were compiled with those of IS200-typing and spvC-PCR, two clusters 

were obtained (IV: table 3). There was no overlapping of IS200-types and PFGE profiles between 

the clusters. They contained profiles either with or without the spvC gene. The isolates (n=54) of 

the larger cluster had IS200-types D, F, G, H, I, K, L or M, no spvC gene and one to three PFGE 

profiles in common. Isolates of the most common XbaI-profile 10 belonged to this cluster. The 

isolates (n=11) of the smaller cluster had IS200-type A or C, the spvC gene and XbaI-profile 20, 

21, 23, 24, 25 or 26. These profiles were seen in human foreign and domestic isolates and in 

cattle. Three isolates were not placed into either of the two clusters because of their divergent 

IS200-profile (B and E) or XbaI-profile (130). 
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6. DISCUSSION 
 

The aim of this study was to understand the molecular epidemiology of salmonella infections 

caused by the Salmonella serovars S. Infantis, S. Agona, and S. Typhimurium DT1. We wanted to 

see how the infection causing strains evolve and spread. Focus was laid on cattle isolates and the 

infection in Finnish cattle as Salmonella infection in cattle can be transmitted to humans by several 

routes. Some of these routes e.g. the environment are difficult to control. 

 

6.1 Characterization of S. Infantis isolates (I, II) 
 

6.1.1 Application of molecular methods  

 

The molecular typing methods applied in the analysis of S. Infantis are shown in Table 2. PFGE 

was highly discriminatory in typing of S. Infantis, as has also been reported for other Salmonella 

serovars (e.g. Baquar et al 1994a; Powell et al 1994). In our study (II), a total of 51 different XbaI-

macrorestriction profiles (i.e. bands larger than 125 kb) were detected in the 588 analysed isolates 

from 478 cattle farms over the years 1985 to 2003. An additional three profiles were obtained from 

among the 48 analysed cattle slaughterhouse and cattle transport float isolates for the period 1992 

to 1995. The infection among cattle seem fairly homogenous as the predominant macrorestriction 

profile pf1 was found in 68 per cent of the cattle farm isolates and the most common pf-types pf1, 

pf2, and pf3 were detected in 80 per cent of the cattle farm isolates. Overall, 99 per cent of the 

analysed isolates from cattle farms had pf-types clonally related to each other (F-values above 

0.7). This result supports the conclusion that the S. Infantis infection in cattle is endemic.  

 

Not many studies on the molecular analyses of S. Infantis have been published. In a study by 

Merino et al (2003), 15 Argentinian and four Spanish strains of S. Infantis were analysed by XbaI- 

and XhoI-PFGE; all the Argentinian strains had identical profiles despite their geographical origin. 

The PFGE conditions differ from those we used, and no molecular weights are shown, but the 

Argentinian PFGE profile has all the bands typically seen in XbaI-PFGE of S. Infantis. In our 

analysis of isolates from Finland, we also analysed some isolates of foreign origin. There was one 

significant difference between these two groups of isolates: namely in the intensity of one of the 

bands. In the Finnish isolates, typically a band of approximately 280 kb was most intensive 

(number five from the top in the dominating PFGE profile pf-type pf1; Figure 1 in our study I). In 

contrast, in some of the isolates of foreign origin, a band of approximately 310 kb (number four 

from the top in a typical isolate) was most intensive. This observation is also true for the 

Argentinian profile. Wegener and Baggesen (1996) investigated an outbreak of human 

salmonellosis caused by S. Infantis, XbaI-PFGE, produced 21 different PFGE profiles from 135 
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analysed isolates. The banding patterns resemble those obtained from Finnish isolates, although 

the PFGE conditions are different. However, the exact comparison is impossible, as the Danish 

banding patterns are shown only as drawings, not as photographs, which would have also enabled 

comparisons of band intensity. Murakami et al (1999) analysed 110 isolates of S. Infantis by 

PFGE, 35 distinct profiles were seen but they used BlnI as the restriction endonuclease.  

 

Prior to the development of PFGE, ribotyping and IS200-typing were considered useful for typing of 

isolates of Salmonellae (e.g. Olsen et al 1994b; Stanley et al 1994). Ribotyping and IS200-typing 

were also applicable in the analysis of the endemic S. Infantis infection in Finland. However, the 

infection has become more homogenous over time. In isolates obtained in the 1980s, up to eight 

different ribo/IS200-types were determined among domestic isolates from humans, poultry and 

cattle (Pelkonen et al 1994). The analysed cattle isolates (n=11) were all of the same ribo/IS200-

type (1A), which later became one of the predominant ribo/IS200-types. In the 1990s, mainly one 

ribo/IS200-type (1A) was found among humans and cattle, and two ribo/IS200-types (1A and 1B) 

were detected among poultry (Pelkonen et al 1998). In this study (II), five different ribo/IS200-types 

were detected: the ribo/IS200-type 1A was found in 51 of the analysed 57 cattle isolates, and in 

isolates obtained in the 1980s, 1990s and 2000s, whereas the other ribo/IS200-types were only 

found either in samples of the 1980s (1Q, 1S, 1T) or 2000s (7O), This parallels the typing results of 

domestic isolates from humans and poultry from the 1980s and 1990s, in that they showed a 

decreased diversity over time (Pelkonen et al 1994, 1998). 

 

Our studies (I, II) support the conclusion that the occurrence of plasmids is typical of our endemic 

S. Infantis infection (Pelkonen et al 1998). In a study by Helmuth et al (1985), only 12 per cent of 

the analysed S. Infantis isolates were found to harbour plasmids. In our present study (II), S1-

nuclease analysis combined with PFGE showed that 88 per cent (352/398) of the analysed 

isolates contained plasmids. Plasmids seemed less common in the isolates of the 1980s for which 

the plasmid containing percentage varied between 33 and 60. In contrast, those isolates obtained 

from the 1990s seemed to harbour plasmids in between 57 and 100 per cent of the analysed 

isolates. Naturally plasmids might have been less frequent in the 1980s. However, the storage of 

the S. Infantis strains on egg agar slopes before the analysis of 1980s samples, compared to the 

majority of samples being stored at -70°C for strains from 1990s may be the cause for this 

difference. Olsen et al (1994a) have shown that plasmids can be lost during stab cultures. Plasmid 

profiles of chicken salmonella can also change rapidly (Brown et al 1992). Plasmids have therefore 

not been regarded as very reliable for long term surveillance. 

 

A specific XbaI-PFGE plasmid profile not previously encountered was associated with the feed-

related outbreak of S. Infantis among cattle in May 1995 (I). S1-nuclease analysis and HindIII 
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digestion of alkaline lysis isolated plasmids confirmed the presence of the feed-related plasmids, of 

which the 60 kb plasmid was visible in XbaI-PFGE. 

 

6.1.2 S. Infantis infection on cattle farms 

 

Certain PFGE profiles clustered with regard to certain municipalities and in some cases the 

epidemiological information given by the local veterinarian support our typing results (II). 

Confirmation was given in respect of contacts between farms, which in our analysis had the same 

PFGE profiles, pf1/24 and pf1/37, for the municipalities of Kälviä and Teuva, respectively. 

Additional data was not available for all municipalities regarding the exact location of the individual 

farms and any possible contacts between them.  

 

The ribo/IS200-types 1A and 1O and the most common pf-types seen among the analysed cattle 

isolates can also be seen among domestic isolates of poultry and humans (Lindqvist et al). 

Ribo/IS200-type 1A, which is typical of the endemic S. Infantis infection was also determined 

among human isolates of foreign origin and among foreign animal isolates from 1993. However, 

these foreign ribo/IS200-type 1A animal isolates have pf-types not yet detected among Finnish 

cattle isolates. On the other hand, pf-types determined among Finnish cattle isolates can also be 

detected among foreign isolates of both human and animal origin of the 1990s. Even so, the 

ribo/IS200-types of those foreign isolates differ from those of the Finnish cattle isolates. Animal 

isolates of foreign origin of the 1980s did not share profiles with the Finnish cattle isolates though 

they did share profiles with domestic human and poultry isolates (Pelkonen et al 1998). As the 

Finnish cattle isolates have both the ribo/IS200-type and the PFGE profile in common only with 

other isolates of domestic origin further suggests the spread of an endemic infection. Moreover, it 

shows the importance of using more than one typing method when evaluating possible 

transmission routes of infection if detailed epidemiological data are not available. 

 

Not many studies are published on the stability of PFGE profiles. Nevertheless, in those published, 

at least some of the profiles seem to be relatively stable. A study by Thong et al (1996) indicated 

that certain PFGE profiles of S. Typhi of Santiago, Chile, persisted over a time period of 11 years. 

The PFGE profiles remained almost stable in strains of S. Berta obtained during a nationwide 

outbreak in Denmark from 1984 to 1992 (Olsen et al 1996a). Two predominant PFGE profiles of S. 

Typhi in Papua New Guinea have remained dominant and stable over the period from 1992 to 

1999 (Thong et al 2002). In a study by Refsum et al (2002), PFGE patterns of S. Typhimurium 

isolates from passerines were found to be stable over time periods of 20 to 30 years. In our study 

(II), the predominant S. Infantis pf-type pf1 was detected in the 1980s in addition to every year 

during the 1992-2001 period. In 2002, there was only one S. Infantis positive farm, but in 2003, pf-
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type pf1 was detected again. The second most common pf-type pf2 was also found in cattle in both 

the 1980s and the 1990s. Pf-type pf1 was the only type associated with the endemic bovine 

infection both at the start of our analysis period in 1985, and as the infection seemed to fade out in 

2003. During this time period, 50 other pf-types appeared and vanished. Thus there is no apparent 

trend towards increasing genetic diversity of PFGE profiles over this time period. 

 

The national control programme of salmonella in cattle requires bacteriological monitoring of 

infected herds by faecal sampling. Cultures received from successive samplings enabled us to 

follow the PFGE profiles on a total of 142 farms (II). The profiles seemed fairly stable. Changes in 

XbaI-banding patterns were found in 22 per cent of the herds. Usually this manifested as a one or 

two band difference. The pf-type was the same in at least two of the isolates analysed from each 

farm: in 87 per cent of the farms in the same year (68 farms of 78), 76 per cent of farms for two 

different years (52/68) and 91 per cent for three or four years (20/22). Nevertheless, as minor 

changes in PFGE banding patterns seem to occur relatively frequently during long-lasting 

infections, it is advisable to test several isolates from a herd in outbreak investigations. 

 

After the feedborne S. Infantis outbreak in 1995, the 60 kb plasmid associated with the outbreak 

strain was found to be stable on the infected farms for up to 15 months (I). However, the material 

was very limited. The feedborne plasmid of 60 kb was stable in the 12 analysed isolates 

representing 11 farms though the plasmid subtype changed more readily (7 isolates). Even so the 

pf-type pf1 remained unchanged in 10 of the isolates. In the two where it had changed, the change 

could be explained by a point mutation. The feed-related genotype and the related plasmid 

subtypes seemed to disappear relatively rapidly after the outbreak. In 1997, only two remained, 

and in 1998, only one farm had any of these types. Similarly, the pf-types were not found in 1999 

or in 2000. However, in 2001 profile pf1/39 was detected on one farm (II). S. Infantis infection had 

not been detected on this farm in the 1990s. It is impossible to say, whether the particular infection 

faded out, or whether the genotype lost its specific plasmid. Without the 60 kb plasmid, the 

appearance in XbaI-PFGE would not be distinguishable from the dominating PFGE profile pf1 in 

any way. Furthermore, the trend in the number of cattle farms infected with Salmonella, and S. 

Infantis in particular has also been rapidly decreasing since 1997 (Figure 1). 

  

The increase in the number of S. Infantis positive farms in 1995 (Figure 1) was due to both 

increased sampling, which detected subclinical infections, and to the spread of the infection via 

feed. In the latter case the spread was both mediated directly and indirectly as secondary 

infections to the feedborne infection. A peak in the number of non-Infantis salmonella farms in 

1996 was as a result of the increased monitoring for bovine salmonella. This policy was carried out 

both as a part of the national Salmonella control programme and as the industry’s own more 
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rigorous health standard checks. The national control programme of salmonella in cattle requires 

bacteriological monitoring of infected herds by faecal sampling of all animals on the farm. Culling of 

infected animals is recommended for the eradication of the infection. Epidemiological 

investigations are carried out on the farms to identify routes and sources of infection and 

manifestations of disease. The infection is often subclinical. Together with the local veterinarians, 

control programmes for the individual farms are made. These include improvements in production 

hygiene, efficient in-house cleaning and disinfection, and proper storage and handling of slurry and 

contaminated water. Emphasis is put on proper rodent control as well as controlling wild birds, 

insects, cats and dogs. No animals are allowed to have access to the feed stores. The cowshed is 

divided into ‘clean’ (feed) and ‘dirty’ (manure) areas. The equipment used at the farm is equally 

divided, so as to avoid cross-contamination. There are also footbaths with active disinfectants 

provided at the entry to the cowsheds. The movements are planned so that the ‘clean’ and ‘dirty’ 

routes will not cross. If that is not possible, footbaths are placed at the crossings. The farms 

maintain a closed-herd policy. Animals are not sold until the farm is free of Salmonella (two 

negative faecal cultures taken one month apart). Visitors, such as veterinarians, are provided with 

clean protective clothing and disinfected boots. Once the infection is eradicated, it is important to 

continue with the good hygiene routines. Only feedingstuffs that are free of Salmonella are 

purchased. No unnecessary visitors are allowed. Any replacement animals have to be free of 

Salmonella, and the cattle transportation vehicles cleaned between animal transports. The rapid 

elimination of the S. Infantis infection in addition to other bovine salmonella infections in the late 

1990s indicates that by correct control measures the infection can be eradicated or kept at an 

acceptable level. 

 

6.2 Characterization of Salmonella Agona isolates (III) 

 

6.2.1 Application of molecular methods 

 

The molecular typing methods applied in the analysis of S. Agona are shown in Table 2. PFGE 

proved most useful for typing of S. Agona. The isolates did not harbour any IS200 element, as has 

also previously been reported (Lam and Roth 1983; Gibert et al 1990), rendering this method 

unapplicable. S. Agona is also unlikely to be subdivided by ribotyping (Threlfall et al 1996). With 

few exceptions, the analysed isolates were sensitive to all antimicrobials tested, thus 

antibiogrammes did not provide useful epidemiological markers. 
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We saw a total of 39 different PFGE profiles by XbaI-digestion of 110 strains of S. Agona. The 

overall differences between the pf-types were small and most pf-types were encountered in only 

one or two isolates. The importance of the ability to differentiate the isolates into that many 

subgroups can be questioned, and too many conclusions based on the results of one restriction 

enzyme only should not be drawn. Analysis using the additional enzymes BlnI, SpeI and NotI, 

support our findings even though the pf-types by XbaI were very similar. Thus the differences seen 

cannot be disregarded. In contrast, the situation was the opposite only for the pf-types pf1, pf2, 

pf3, pf4, pf21, pf22, and pf23, where analysis with other enzymes in addition to XbaI supported our 

conclusions that these pf-types are closely related. 

 

Threlfall et al (1996) described the application of XbaI-PFGE to characterizing an international 

outbreak strain of S. Agona. Different conditions under which PFGE was carried out prevent direct 

comparison between data of our studies. Nevertheless the S. Agona chromosome seems to have 

many conserved restriction sites for the restriction enzyme XbaI since many fragments are 

common between our different PFGE profiles. Double bands, i.e. bands containing two fragments 

of roughly the same size but visible as one thick band, are commonly produced by the action of 

XbaI on S. Agona DNA. Similar observations can be made when comparing our results with the 

results of a study by Rabsch et al (2005). In their study strains of S. Agona from 1969 to 2003 were 

analysed using XbaI-, BlnI-, and SpeI-PFGE. Moreover, in a study by Nesse et al (2003), 13 

different PFGE profiles were obtained when 51 isolates of S. Agona from fish feed factories and 

other sources in Norway were analysed by XbaI-PFGE. Some of their dendrogram profiles 

resemble those obtained in our analysis, but comparison by just the naked eye alone cannot be 

anything more than indicative. In another study by Nesse et al (2005), 27 isolates of S. Agona 

obtained from various sources in Norway were analysed by XbaI-PFGE. Unfortunately, direct 

comparison between the dendrograms of the 12 different PFGE profiles they obtained and our 

dendrogram profiles is not possible as no molecular weights are shown in their dendrogram. In a 

rough comparison, none of their profiles seem identical to any of our 39 profiles, but many bands 

seem common between the profiles in both studies. In an analysis of 59 isolates of S. Agona from 

Texas, USA (Taylor et al 1998), the isolates were determined to be indistinguishable if they had 

the same number of restriction bands and the bands were of the same size. Isolates were 

considered similar if they had a difference in only one band. The outbreak pattern was detected in 

18 of the 59 patients. A similar pattern was detected in 8 patients, whose history could not be 

connected with that of the patients with the outbreak pattern. This data suggested that even a 

single band size difference may be enough to exclude a patient from an outbreak investigation. 

Michael et al (2006) used both XbaI-PFGE and BlnI-PFGE in their analyses of 45 S. Agona 

isolates obtained from slaughter pigs in Brazil. XbaI-PFGE yielded 10 profiles whereas BlnI yielded 
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seven profiles. Some of their profiles resemble those we obtained in our analysis, but again, 

different conditions under which the PFGE was carried out make the comparison limited. 

 

Plasmid analysis did not provide any additional information in our analysis of serovar Agona. 

However, analysis of large plasmids using S1-nuclease was helpful in interpreting the XbaI-PFGE 

profiles, as some additional bands in the profiles were related to plasmids of that particular size. In 

addition, the presence of plasmids larger than 20 kb complicated the interpretation of banding 

patterns where the generated fragments were small, such as after digestion with NotI and SpeI for 

which the fragment size ranged from approximately 10 kb upwards. 

 

6.2.2 Outbreak analyses 

 

Salmonella Agona caused two small outbreaks among cattle, in the 1994-1995 and in 1997 

periods, and a relatively large outbreak among humans in 1999.  

 

Four XbaI-profiles (pf1, pf2, pf3, and pf4) were associated with S. Agona infection on cattle farms 

in 1994-1995. The profiles pf1 and pf2 were regarded as outbreak profiles. None of these profiles 

were previously seen among analysed domestic or foreign isolates. However, as S. Agona was 

seldom encountered in Finland before 1994, the number of analysed isolates from the years prior 

to the outbreak was very small. The outbreak profile pf1 was found in the area of the outbreak in 

north-western Finland in slaughterhouse hygiene samples in 1996 and 1997. A further finding was 

in fur animals in 1996. Fur animals are often fed slaughterhouse waste, and although it is usually 

treated with heat or formic acid to avoid contamination, Salmonella is sometimes isolated in 

samples obtained from fur animals. Only one domestic human isolate of pf1 was detected, and it 

was in 1997, long after the outbreak among cattle. 

Three XbaI-profiles (pf21, pf22, and pf23) seemed to be related to a small outbreak among cattle 

in Finland in 1997. The differences of three to six bands between these profiles and pf1 can be 

explained by point mutations, and suggests that the outbreaks in 1994-1995 and 1997 were 

possibly caused by strains that can be considered related (Maslow et al 1993; Tenover et al 1995). 

These three pf-types (pf21, pf22, and pf23) had the same SpeI-profile. Pf22 and pf23 also shared 

the BlnI- and the NotI-profile.  

 

The outbreak in 1999 occurred in the region of Vaasa relatively close to the cattle farm outbreak in 

1994-1995 and involved more than 50 human cases. Epidemiological investigations were carried 

out by the local authorities, but the source of the outbreak remained unknown. There seemed to be 
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a connection with fur animals, which were fed waste picked up from the restaurant. One would 

therefore have thought it likely to detect the profile pf1 in the human outbreak isolates instead of a 

new profile, pf39. However, there is at least a seven band difference between pf1 and pf39 thereby 

indicating unrelated profiles (Maslow et al 1993; Tenover et al 1995). Pf1 was still found in 

slaughterhouse isolates obtained in south-eastern Finland in 1999. However, based on the 

molecular typing it is much more likely that the human outbreak in 1999 was not related to traces 

of the cattle farm outbreak in 1994-1995. Without the detailed typing results, an infection route 

from cattle (1994 onwards) to fur animals (1996 onwards) and finally to humans (1999) would have 

been easily accepted as the cause of the human epidemic.  

 

None of the isolates of foreign origin had the XbaI-profiles pf1, pf2, pf3, pf4, pf21, pf22 or pf23, 

which were seen in domestic cattle isolates. Neither did they have the profile pf39, which was 

related to the restaurant outbreak among humans in 1999. However, as no recent foreign isolates 

were available, a foreign source for the outbreak in 1999 cannot be disregarded. The many XbaI-

profiles detected among the 30 human isolates of foreign origin (21 profiles) may reflect the 

heterogeneity of the worldwide S. Agona infection. Five of the profiles were also found among 

human isolates of domestic origin. It cannot be excluded that some isolates were misclassified as 

foreign, or some infections classified as domestic have in fact a foreign origin. 

 

The incidence of S. Agona on cattle farms peaked in 1997 and declined to a baseline of only one 

or two ‘positives’ a year by 2000. After 2000, no farms tested positive for S. Agona were detected 

(National Veterinary and Food Research Institute 1985-2005). Based on comparing the typing 

results of subsequent isolates to those of the outbreak of the 1994-1995 period, we suggest that 

an infection by a new strain caused the outbreak in cattle in 1994-1995. Moreover, we consider it 

highly likely, that a closely related strain caused the infection among cattle in 1997. The outbreaks 

among cattle were not associated with the outbreak among humans in 1999. They do not seem to 

have affected the annual level of domestic S. Agona infection among humans in Finland (National 

Public Health Institute 1985-1998; Ministry of Agriculture and Forestry 2000; Finnish Food Safety 

Authority Evira 2006). 
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6.3 Characterization of S. Typhimurium DT1 (IV) 

 

6.3.1 Application of molecular methods 

 

The molecular typing methods applied in the analysis of S. Typhimurium DT1 are shown in Table 

2. PFGE proved most useful and specific also for S. Typhimurium DT1. In total 38 different XbaI-

PFGE profiles were detected among 255 isolates of S. Typhimurium DT1 from 1984 to 1999, and 

36 profiles were associated with infections of domestic origin. Of the seven profiles detected 

among isolates of foreign origin, five were also found among domestic isolates. The predominant 

profile (profile 10) was frequent among isolates of both human and animal origin in the 1980s and 

1990s. Five different XbaI-profiles were detected in the 17 analysed isolates for the 2002-2004 

period. These were analysed according to the standardized PulseNet PFGE Protocol 

(www.cdc.gov/pulsenet). The predominant profile (profile 10) was found on three of the nine 

positive cattle farms. Profile 20, previously only seen in human and cattle isolates, was still seen 

on four cattle farms but also in all isolates from pigs (n=4) and turkeys (n=3) (unpublished results). 

 

Molecular subtyping by only XbaI-PFGE is not specific enough to discriminate in our endemic S. 

Typhimurium DT1 infection. Therefore it is advisable to use a combination of restriction enzymes. 

When the combination of the results of the three restriction enzymes (XbaI, BlnI and SpeI) and 

PFGE was used, 54 profiles were detected. As result of our work a standardized protocol for the 

analysis of S. Typhimurium DT1 can be used, which involves a combination of XbaI-, BlnI- and 

SpeI-PFGE. A new molecular method, the multiple-locus variable-number tandem-repeats analysis 

(MLVA) (Lindstedt et al 2003, 2004), was used in the analysis of isolates of our endemic highly 

homogenous S. Typhimurium DT1 infection for the time periods 1983-1995 (n=52) and 2003-2007 

(n=28) (Heinikainen S, Pelkonen S). Twenty-three different profiles were detected: 16 profiles in 

1983-1995 and 11 profiles in 2003-2007. In 1983-1995, 60 per cent of the analysed isolates had 

the same profile whereas only 14 per cent of the isolates were of the same profile in 2003-2007. 

Overall there was more diversity in the MLVA profile in the more recent isolates. Four profiles were 

common for the two time periods, and there was no clustering regarding the time or origin of 

isolates. For the isolates obtained from the 1983-1995 period, PFGE seemed more discriminatory 

than MLVA. Even so, the two major clusters that were formed by combining the results of PFGE 

and IS200-profiling could also be detected by MLVA typing. These results suggest that MLVA 

could be used in outbreak investigations and also in long term surveillance. 

 

In a study on S. Typhimurium DTs 1, 9, 126, and 135 (Jeoffreys et al 2001), XbaI-PFGE had 

limited discriminatory power both between and within phage types. Other published studies on 
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molecular analyses of S. Typhimurium DT1 are scant, but for other phage types of S. 

Typhimurium, XbaI-PFGE on its own has not always been very discriminatory. In a study by Olsen 

et al (1997), XbaI-PFGE detected only one PFGE profile for isolates of S. Typhimurium phage 

types DT110, DT120 and DT135, and four PFGE profiles for isolates of DT49. However, the 

number of analysed isolates was quite limited; 18 (DT49), 10 (DT110), 5 (DT120) and 7 (DT135). 

When XbaI-PFGE, among other molecular methods, was used for the characterization of an 

outbreak of a strain of multiresistant S. Typhimurium DT104 (Lawson et al 2004), it did not 

discriminate between the outbreak strain and most other multiresistant DT104 isolates. These 

results, together with the results of our study, indicate that XbaI-PFGE on its own may not be 

discriminatory enough within one specific phage type of S. Typhimurium. 

 

Rivoal et al (2006) compared the discriminatory power of XbaI-, SpeI-, and BlnI-PFGE for 399 

isolates of S. Typhimurium (no data on phage types). Not all isolates were typable by the 

restriction endonucleases, but 65 (XbaI), 73 (SpeI) and 95 (BlnI) different profiles were obtained 

and 143 combination profiles could be defined. As BlnI was more discriminatory than the other two 

enzymes, and the patterns obtained were more easily interpreted than those generated by SpeI, a 

combination of XbaI- and BlnI-PFGE is recommended. Heir et al (2002) analysed 102 

epidemiologically unrelated isolates of S. Typhimurium by XbaI-PFGE and obtained 46 distinct 

patterns. However, for a majority of the isolates the phage types were not determined. In a study 

by Foley et al (2006), 86 XbaI-PFGE patterns were generated among 128 isolates of S. 

Typhimurium, but again no data on phage types were obtained. Phage typing was considered vital 

by Gatto et al (2006) in cases of outbreak investigations. In their study, 28 different XbaI-PFGE 

profiles were identified among 1060 strains of S. Typhimurium DT104. In another analysis of S. 

Typhimurium DT104 (Malorny et al 2001), 32 strains isolated from healthy German pigs were 

analysed by XbaI-, BlnI- and SpeI-PFGE. The study found that BlnI and SpeI were equally 

discriminatory yielding 7 profiles each whereas XbaI yielded 4 different profiles. Not surprisingly, a 

combination of the PFGE profiles obtained with the three restriction endonucleases was even more 

discriminatory; 11 combination profiles were obtained. Kariuki et al (1999) analysed 64 isolates 

encompassing 11 definitive phage types of S. Typhimurium by XbaI- and SpeI-PFGE. Eight PFGE 

clusters were detected, but there was no consistent pattern of association between the phage type 

of the isolate and a PFGE cluster. In a study by Woo and Lee (2006), phage types could not be 

determined for the 118 isolates of S. Typhimurium. However, they found XbaI-PFGE to be more 

suitable and cost-effective than BlnI- and SpeI-PFGE. Furthermore, XbaI analysis of 38 isolates of 

S. Typhimurium yielded 11 different PFGE profiles. No data on BlnI- and SpeI-PFGE were given. 

 

Ribotyping was not discriminatory at all in our study (IV) of S. Typhimurium DT1 as all the 52 

analysed isolates were of the same ribotype in which only the strong and fully reproducible bands 
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were scored. In a study by Jeoffreys et al (2001), two different ribotypes were detected among 38 

isolates of DT1. Millemann et al (1995) and Nastasi et al (1993) obtained several different 

ribotypes for S. Typhimurium, but no data was given on the phage types of their isolates. When 

reviewing the literature, this quite often seems to be the case. 

 

Among the 52 isolates of S. Typhimurium DT1 we analysed by IS200-typing, 12 different IS200-

types were detected by PstI digestion. All except ten isolates were of the type A or D. Type D 

seemed to be typical of our endemic isolates from humans and animals in the 1980s and 1990s. It 

was seen in 64 per cent (7/11) of the analysed isolates from cattle. Type A was also seen in two 

cattle farm isolates in addition to human isolates of both domestic and foreign origin. In a study of 

38 strains of S. Typhimurium DT1, which initially were assumed to be similar because they 

appeared to be epidemiologically related, three different IS200-types by PvuII digestion were 

detected (Jeoffreys et al 2001). 

 

Only one band (4.3 kb) was conserved among our 52 isolates of S. Typhimurium DT1 that were 

restricted by PstI for IS200-analysis. The other bands we observed of approximately 24, 22, 19, 

9.4, 4.7, 2.6 and 2 kb could correspond to the conserved PstI bands reported in studies by Baquar 

et al (1993), Stanley et al (1993), and Millemann et al (1995). This suggests that there are certain 

conserved PstI bands among isolates of S. Typhimurium regardless of the phage type.  

 

Only 41 per cent of the analysed 255 isolates of S. Typhimurium DT1 contained plasmids in the 

size range of the serovar specific virulence plasmid, and only 11 per cent of the 255 isolates 

possessed the spvC gene on a plasmid. One would have expected a higher proportion of plasmid 

carrying S. Typhimurium, as this serotype has been associated with a serotype-specific virulence 

plasmid of a distinct molecular weight. Helmuth et al (1985) showed that 88 per cent of the 60 

analysed isolates of S. Typhimurium carried a plasmid of approximately 60 MDa and only one of 

the strains carried no plasmid at all. Further analysis of the 60 MDa plasmid revealed an increased 

virulence in plasmid carrying strains. Woodward et al (1989) analysed the distribution of virulence 

plasmids within Salmonellae. They found that all three isolates of S. Typhimurium DT1 showed 

homology to the 10 MDa virulence region. The natural S. Typhimurium population can exist as 

high-virulence or low-virulence subclones (Helmuth et al 1985). In our study, the widely distributed 

XbaI-profiles associated with IS200-type cluster D, F, G, H, I, K, L, and M do not carry the spvC 

plasmid. These endemic strains might be of lower virulence. The low virulence might be associated 

with the persistence and endemic nature of the S. Typhimurium DT1 infection in Finland. The 

isolates of seven XbaI-profiles (20, 21, 23, 24, 25, 26 and 130) contained the spvC plasmid. These 

profiles resembled each other in XbaI-PFGE and in IS200-types (A, C). 
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6.3.2 S. Typhimurium DT1 infection   
 

The analyses of S. Typhimurium DT1 isolates with both PFGE and IS200-typing suggest that our 

endemic infection is fairly homogeneous; XbaI-PFGE profile 10 and IS200-type D seem typical for 

our domestic isolates since the 1980s. This combination is considered to represent the major of 

the two most prominant clonal lineages of S. Typhimurium DT1 seen in Finland (XbaI-PFGE profile 

10; IS200-type cluster, D, F, G, H, I, K, L, and M; no virulence plasmid). The other clonal lineage, 

which carries the spvC plasmid, is represented by the XbaI-PFGE profiles 20, 21, 23, 24, 25, 26, 

and 130 along with the IS200-types A and C. The IS200-type A (with XbaI-profiles 20, 21, 23, or 

26) was fairly common among the analysed human isolates of foreign origin. It was also found 

among Finnish cattle isolates where human carriers who had visited abroad might have introduced 

it. In the 2000s, XbaI-PFGE profile 20, which in earlier years had been detected in human isolates 

(both domestic and foreign) and cattle isolates, was now also seen in isolates obtained from 

poultry and pigs (unpublished results). These were all regionally clustered. No human isolates 

were available from the same time period. As the number of analysed isolates is small (poultry 

isolates from 1981 to 1999: 36 isolates; from 2002-2004: 3 isolates), the conclusions that can be 

drawn are very limited. However, it appears as if this 'foreign' type of DT1 first infected the cattle 

farms and then later some poultry flocks. 

 

Outbreaks of S. Typhimurium DT1 among humans in Finland involved consuming unpasteurized 

milk in the 1960s and 1970s. In the 1980s, human carriers of S. Typhimurium DT1 seemed to 

spread the infection to others. An increase in cases of domestic human salmonellosis caused by S. 

Typhimurium DT1 has been seen in late summers and autumns since the 1960s (National Public 

Health Institute 1965-1994) (Ministry of Agriculture and Forestry 2000). The sources of human 

infections, especially the sporadic events, are unknown in most cases. The most common of the 

endemic profiles, XbaI-PFGE profile 10, was found in analysed isolates from hedgehogs and wild 

birds. These might act as important reservoirs, by maintaining a certain baseline level of S. 

Typhimurium DT1 in the environment, and consequently be the possible sources for human 

infections. A study by Refsum et al (2002) suggested that wild passerine birds were an important 

source of human serovar S. Typhimurium infections in Norway. Comparison of Refsum et al (2002) 

and our XbaI-PFGE data is inconclusive. However, their subclusters A1 (pigeon) and B1 (gull) 

resembles our XbaI-profile 20, found mainly in human isolates of foreign origin and in cattle farm 

isolates. Their subcluster B3 (small passerine) resembles our XbaI-profile 27, seen in an isolate 

obtained from a horse in 1994. None of the five most prevalent subclusters reported in the 

publication, namely A1, A2, B1, B3 and G1, resembles our XbaI-profile 10. In Finland, mainly other 

phage types of S. Typhimurium than DT1 are found in birds, whereas DT1 is associated with 

hedgehogs (National Veterinary and Food Research Institute 1965-2005). Refsum et al (2002) also 
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suggested that hedgehogs constitute the primary reservoir of certain S. Typhimurium clones (J1 

and K). As these profiles are not shown in their publication, comparison with our results is 

unfortunately impossible. Furthermore, most of the analysed isolates in their study lack phage 

typing results. As Norway is fairly close to Finland, both geographically and culturally, a 

comparison would have been interesting. S. Typhimurium is also the dominant serovar for 

salmonellosis acquired in Norway, and considered endemic in that country (Heir et al 2002). 

 

Sporadic cases of S. Typhimurium DT1 are still seen among humans. The source is often 

unknown, though the source for an outbreak can often be established by epidemiological 

investigations. An outbreak of S. Typhimurium DT1 whose source was in homemade cheese in 

1999 (Skogberg et al 1999) was analysed by XbaI-PFGE. Profile 10 was seen in isolates from this 

outbreak and in isolates from outbreaks of the 1980s and 1990s. However, the immediate source 

for the sporadic cases seen in Finland cannot be determined as the XbaI-PFGE profile 10, IS200-

type D is predominant and widely distributed. This would also be the case, if no food isolates were 

available as might occur in outbreak investigations. Without determining the source, focused 

control measures cannot be implemented. When S. Infantis appeared in chickens in Finland in 

1971, hundreds of sporadic cases were observed in humans (Simula and Jahkola 1972). However, 

measures to control the infection in broiler chickens were taken and have been evaluated (Rantala 

1976; Seuna 1981). A national Salmonella control programme was started in broiler production, 

including in-house control measures. Salmonella certifications were demanded for poultry meat 

entering Finland. Restrictive orders were given to breeder-flocks detected positive for Salmonella. 

These orders resulted in slaughtering of the birds. Salmonella-positive flocks were slaughtered at 

the end of the day, and the meat was heat-treated. Epidemiological investigations were carried out 

in order to identify the source of infection. The infected poultry farm was cleaned and disinfected. 

Before new birds were taken to the farm after cleaning the farm, sampling results had to be 

negative for Salmonella. In addition, consumers were advised on how to hygienically prepare 

broiler chickens in the kitchen. As a result, the prevalence of salmonella in broilers has dropped, 

and the spread of S. Infantis infection from broilers to humans has been greatly reduced (Pelkonen 

et al 1998). Similarly, determining possible reservoirs for S. Typhimurium DT1 would enable 

focused control measures, which in turn would diminish the number of cases of S. Typhimurium 

DT1 in the future. 
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6.4 Molecular typing methods in the analysis of Salmonellae 

  

When deciding upon the best typing strategy, the reasons for typing and the serotype of the 

isolates have a considerable influence. A combination of typing methods is advisable for 

discrimination between strains. In addition, as the typing methods measure the genetic changes 

that occur, some methods are more applicable for outbreak investigations than for longterm 

surveillance (e.g. plasmid analysis). Some typing methods are also very specific, and the 

interpretation of a single band difference is not always easy. 

Nevertheless, the XbaI-PFGE method has been successfully applied for many serovars of 

Salmonellae e.g.: S. Agona (Threlfall et al 1996), S. Brandenburg (Baquar et al 1994), and S. 

Javiana (Lee et al 1998). The same method has also been used within phage type e.g.: S. 

Enteritidis (Powell et al 1994), and S. Typhi (Nair et al 1994). PFGE was also found to be the most 

useful for all three serovars analysed in this study (I-IV). International publications on molecular 

analyses of S. Typhimurium DT1 are scant, but for other phage types of S. Typhimurium, XbaI-

PFGE on its own has not always been very discriminatory.  

 

In a study by Murase et al (1996), 28 isolates of S. Enteritidis obtained from 19 patients in a food 

poisoning outbreak were analysed by XbaI- and BlnI-PFGE. Variations in PFGE patterns were 

observed for BlnI but not for XbaI; hence the choice of restriction endonuclease seems critical. For 

example, Rivoal et al (2006) have also shown BlnI to be very specific, but BlnI is much more 

expensive than XbaI. One factor affecting the choice of restriction endonuclease is the number of 

isolates to be analysed, as the costs are considerable. A balance has to be found between a 

restriction endonuclease having enough discrimination between the isolates without being too 

costly. If the number of isolates to be analysed is large, often only one restriction endonuclease is 

used. Therefore, despite some reports on XbaI not being discriminatory, it is still the restriction 

endonuclease chosen for PulseNet US, an American collaboration for surveillance of foodborne 

pathoges (http:/www.cdc.gov.pulsenet), in addition to that used for PulseNet Europe. 

 

The use of Dice similarity coefficient assumes that bands of identical size are genetically 

homologous. However, fragments that migrate the same distance do not always contain 

homologous genetic material. Moreover, PFGE often fails to resolve bands of nearly identical size. 

In a study on Escherichia coli O157:H7, Davis et al (2004) recommended the use of six or more 

restriction enzymes for PFGE to provide a reasonable estimate of genetic relatedness. They also 

stated that visual evaluation of gel images is essential, as software cannot be relied upon in 

assessing the presence or absence of bands. Brown et al (2006) suggested, that in addition to the 

“Gold Standard” PFGE typing, plasmid typing should be considered, as it might simplify the 

interpretation of PFGE results. Overall, the presence of plasmids larger than 20 kb makes the 
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interpretation of banding patterns complicated, especially for restriction endonucleases which 

generate fragments that are small, e.g. after digestion by NotI and SpeI. 

 

Murase et al (1996) suggest that examining multiple colonies on plates by PFGE diminishes the 

risk of misinterpretation arising from point mutations of chromosomal DNA during growth. 

Traditionally, only one isolate per farm has been stored in a national collection. However, an 

infection may have had existed subclinically for a long time in the herd before the first Salmonella 

isolations were obtained. When that occurs, a clear difference in the banding patterns within the 

herd may be seen. If similar differences were seen between single isolates from different herds or 

infection sources, it would be extremely difficult to judge the significance of the finding, especially 

in case of an endemic infection. Analysis of several and successive isolates from each herd gives 

perspective for the interpretation of differences in banding patterns arising during a single infection. 

 

The ability to compare results from different laboratories at a regional, national and international 

level is increasingly important with the free movement of goods and people. Olsen et al (1997) 

stated that there clearly is a need for standardization of molecular typing procedures to maximize 

this ability to compare typing results. Furthermore, Fisher (1999) published a description on how 

the Enter-net international surveillance network works. For Salmonella, serotyping, phage typing of 

epidemiologically important serotypes, and antibiogram determination have been harmonized in all 

participating countries (17 European and five non-European) and the results pooled. In addition to 

Enter-net, Salm-gene (Peters et al 2003) was established to evaluate the added value of using 

molecular subtyping (namely PFGE) for food-related salmonellosis. The national reference 

laboratories of countries in Europe participated in the project (Austria, Denmark, Finland, 

Germany, Italy, The Netherlands, Scotland, Spain, England, and Wales). The PFGE laboratory 

procedures were standardized; to facilitate comparison with other international work, the 

electrophoresis conditions were identical to those used by PulseNet USA, and the gel images were 

entered into and analysed in the Salm-gene database. It consisted of PFGE profiles of almost 

25 000 Salmonella strains with epidemiological data from nine participating countries. 

 

In Finland, Salmonella serotypes are subtyped by XbaI-PFGE (and BlnI-PFGE or plasmid analysis 

when needed) at the National Public Health Institute (Lukinmaa et al 2004) or at the Finnish Food 

Safety Authority Evira. By 2007, more than 3000 Salmonella strains had been genotyped and the 

various PFGE profiles stored in an electronic library. The situation on the most common serovars 

causing infection in humans and animals in Finland has recently been reviewed (Siitonen A, 

Kuronen H, Pelkonen S in press). In the 2000s, fewer than 3000 cases per year of salmonellosis in 

humans were recorded. Less than 20 per cent of these cases were of domestic origin. 
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Approximately 50 different serovars were annually isolated from the domestic cases of 

salmonellosis. In the cases of salmonellosis of foreign origin, approximately 100 different serovars 

were detected each year. The isolated serovars varied from one year to another. However, only 

ten serovars caused about 75 per cent of the infections. S. Typhimurium and S. Enteritidis were 

frequently isolated from infections of both domestic and foreign origin. 

Salmonella is rare in Finnish production animals. Less than 1 per cent of the specimens have been 

positive for Salmonella, thereby attaining the aim of the Finnish Salmonella control programme 

(FSCP) mentioned in Sections 2.3 and 2.4. S. Infantis and S. Typhimurium, especially DT1, are the 

most common serovars isolated from Finnish production animals (poultry, pigs and cattle). S. 

Infantis used to be the predominant Salmonella serovar in broiler chickens. However, since 2001, 

S. Livingstone has been the most commonly isolated serovar. S. Typhimurium was only isolated in 

one batch in 2001. S. Enteritidis was not detected in broiler chickens at all. In turkeys, S. 

Typhimurium was the most commonly isolated serovar. Eighteen different serovars were recorded 

in pig slaughterhouses, and about 30 serovars in cattle herds. The most common serovar in 

isolates from the 2000s was S. Typhimurium.  

Sporadical isolations were made from other production animals, pets, wild animals, fur animals, 

and zoo animals. S. Typhimurium was the most commonly detected serovar, followed by S. 

Enteritidis. S. Poona was the dominating serovar in isolates from fur animals. S. Typhimurium 

phage types DT40 and U277 were found in small birds and hedgehogs. These phage types also 

commonly infected humans. However, S. Typhimurium DT41, seen in seagulls, was rarely isolated 

from human cases of salmonellosis. In the 2000s, almost one third of the analysed Salmonella 

strains were of another subspecies than Salmonella enterica subsp. enterica. These subspecies 

were seen in reptiles, and were also detected in human cases of salmonellosis. 
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7. CONCLUSIONS    

 

1. The genotype of the feedstuff-related S. Infantis strain was identified. It belonged to the major 

endemic type pf1, but differed from it by having a plasmid visible as an intensive 60 kb band with 

XbaI-PFGE (plasmid subtype pf1/39). Farms infected with the feedstuff-related genotype pf1/39 or 

the related genotypes pf1/43, pf1/44, pf1/45 or pf1/46 carrying the same 60 kb plasmid were 

identified. The feedstuff-related plasmid profile was stable on the infected farms during the follow-

up period. 

 

2. S. Infantis infection in cattle was highly clonal, as 99 per cent of the isolates had XbaI-PFGE 

profiles clonally related to each other. The major genotype pf1 was predominant both at the 

starting year of our analysis in 1985 and as the infection seemed to fade out in 2003. There was no 

trend towards increasing diversity. The feedstuff-related outbreak strain of 1995 did not persist in 

the cattle population. However, there was a general decline in bovine salmonella infections from 

1997 onwards. Testing of several isolates obtained from a herd in outbreak investigations is 

advisable since minor changes in banding pattern frequently occur during long-lasting infections. 

  

3. S. Agona isolates causing a small outbreak on cattle farms in 1994-1995 period were shown to 

contain closely related genotypes, when characterized by PFGE using XbaI, BlnI, SpeI and NotI 

enzymes. Another possibly genetically related small outbreak occurred in cattle in 1997. Based on 

our typing results, the large human outbreak in 1999 was not related to the cattle farm outbreaks. 

Thus molecular typing could show that although the outbreaks were regionally clustered, to our 

knowledge they were not related in any other way. 

 

4. Two clusters were formed among S. Typhimurium DT1 by compilation of the XbaI-, BlnI- and 

SpeI-PFGE and IS200-types and possession of the serovar-specific virulence plasmid. The major 

cluster contained eight IS200-types, including the most common IS200-type D and the XbaI-PFGE 

profile 10, but it had no virulence plasmid. The absence of the virulence plasmid can be regarded 

as typical of this endemic infection. Combination of the PFGE results gave 54 different combination 

profiles. The source for sporadic human infections is unknown in most cases and genetic typing 

did not suggest any clear infection source. However, the most common XbaI-profile 10 was seen in 

analysed isolates obtained from hedgehogs and wild birds. These sources might act as important 

reservoirs, maintaining a minimum baseline level of S. Typhimurium DT1 in the environment and 

consequently, be possible sources for human infections. 
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