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ABSTRACT 

 
Two different typing methods, serotyping and pulsed-field gel electrophoresis (PFGE) typing, 

were used to study Listeria monocytogenes contamination in food processing plants and 

human foodborne L. monocytogenes infections.  

 

L. monocytogenes contamination was studied in two different types of food processing 

plants: one ice cream plant and two broiler abattoirs. A dominant L. monocytogenes PFGE 

type of serotype 1/2b was found to have persisted in this ice cream plant for at least seven 

years. This strain was found in the production environment, ice cream, and equipment, 

especially in the packaging machine. Two broiler abattoirs were evaluated for 

L. monocytogenes contamination of the processing environment, broiler meat, and broiler 

meat products. Contaminated sites in the broiler processing environment included the air 

chiller, the conveyor belt leading to the meat packaging area, and the skin removing machine, 

possibly suggesting important contamination points of broiler meat. The two broiler abattoirs 

harboured different L. monocytogenes PFGE types. Retail broiler meat samples were also 

analyzed in order to compare the results to those from the broiler abattoirs. Of the raw broiler 

meat pieces bought from retail stores, 62% tested positive for L. monocytogenes. PFGE types 

found in the retail raw broiler meat pieces were identical to the PFGE types found at the 

broiler abattoirs where they had been processed. PFGE characterized these industrial strains 

and enabled targeted cleaning and disinfection practices at these food processing plants. 

 

L. monocytogenes isolates from human invasive infections from 1990-2001 in Finland 

were studied in order to detect a possible clustering of cases. The most common 

L. monocytogenes serotype was 1/2a. Altogether 81 different PFGE types were found using 

one restriction enzyme (AscI). A strain of an identical PFGE type of serotype 1/2a had 

appeared in 1994, accounting for 12% of the invasive infections.  

 

In addition to the human invasive infections, we studied two foodborne 

L. monocytogenes outbreaks in Finland.  In the first outbreak in 1997, five healthy persons 

fell ill with febrile gastroenteritis. The outbreak was associated with the consumption of 

vacuum-packed cold-smoked rainbow trout containing L. monocytogenes. Indistinguishable 

L. monocytogenes PFGE types of serotype 1/2a were isolated from the incriminated fish 

product lot and human stool samples. This same L. monocytogenes PFGE type was identical 
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to the most common PFGE type in human invasive L. monocytogenes infections in Finland 

during 1994-2001. 

 

 The second outbreak studied occured in 1999, when 25 patients acquired listeriosis 

from butter, 6 of whom died. This outbreak was initially identified with the help of timely 

serotyping and PFGE typing, and resulted from a globally uncommon strain of 

L. monocytogenes of serotype 3a and unique PFGE type.  

 

For regular epidemiological surveillance of human L. monocytogenes infections with 

PFGE typing, the use of one restriction enzyme is sufficient, but in the case of contamination 

studies or suspected outbreaks, the use of at least two restriction enzymes is recommended in 

order to increase the discrimination power of PFGE typing.  
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1 INTRODUCTION 

 

“About 44 years ago, shortly after the causative agent of listeriosis had been 

encountered in wild rodents, there was an epizootic among veldt rodents in 

the De Aar area along the Tiger River in South Africa. Sand rats were dying in 

numbers, and an organism was isolated, not virulent for most rodents but 

fatal to gerbils by ingestion. On the principle prevailing at that time – of casting 

out devils by Beelzebub – the so-called Tiger River virus, or Listeria 

monocytogenes of today, was used in an effort to destroy gerbils over a belt 

of South African country some 20 miles long, with some success. Among those 

entrusted with the control of plague there were advocates of introducing 

Listeria into other continents for rodent control. This is understandable, 

because the first proved human infection was not reported until 1929, and the 

livestock infections, much later still. But there can be hardly any doubt that 

infection with this organism was associated with illness and death in man 

and other vertebrates long before the cause was isolated and identified”. 

 

- From the foreword by Dr. Dr. h. c. K.F. Meyer in the 

second edition of Dr. H.P.R. Seeliger’s (1961) monograph 

“Listeriosis” 

 
 

Today our knowledge of Listeria monocytogenes has expanded tremendously, and 

research in many areas continues on this fascinating bacterium. Attitudes towards 

L. monocytogenes have changed from using it for possible rodent control to controlling the 

bacterium itself in the modern food processing environment. L. monocytogenes is an 

uninvited guest in food processing establishments, and much effort is required to keep it from 

contaminating processed food. Even if food processing practices are carefully planned and 

based on a hazard analysis and critical control point (HACCP) systems and good 

manufacturing practices (GMP) are followed, including proper cleaning and disinfection, 

problems with L. monocytogenes contamination are possible (Autio et al. 2004). A 

L. monocytogenes contamination problem in a food processing plant may cause a national 

listeriosis outbreak, since the food product lots are often very large, and the distribution area 

may include an entire country or even several continents. 
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L. monocytogenes food processing contamination studies must be conducted when 

L. monocytogenes isolates have been isolated in the food processing environment and the 

need arises to identify the exact problem spots in the process. Careful planning and 

performance is needed for the sampling, isolation, and typing of L. monocytogenes for 

contamination study purposes (Lundén et al. 2005). The typing method to be selected requires 

an understanding of both the strengths and limitations of the chosen typing technique 

(Foxman et al. 2005). Molecular typing methods are valuable tools in contamination studies 

of different L. monocytogenes strains found in the food processing environment. They enable 

comparison at the genotype level visualized by the “fingerprints” obtained. An understanding 

of molecular typing methods and food processing environments is needed to interpret typing 

results. The contamination site may turn out to be a machine in food processing, which might 

then require constant special cleaning attention as part of corrective actions.  

 

Almost 35% of all deaths caused by foodborne bacterial pathogens in the USA in 

1999 was attributable to L. monocytogenes (Mead et al. 1999). Every year foodborne diseases 

cause 76 million illnesses and 5000 deaths in the USA. The incidence of listeriosis is 

relatively low, but it was associated with the highest hospitalization risk and was the second-

leading cause of death for known foodborne pathogens (CDC [Centers for Disease Control 

and Prevention], 2000). These are important reasons for investigating L. monocytogenes 

infections carefully in order to prevent people from eating contaminated food and acquiring 

infection. The identification of L. monocytogenes is not always sufficient when one is trying 

to investigate a possible foodborne outbreak. Establishing an epidemiological link between 

incriminated food and patients is a difficult task to perform and requires systematic 

cooperation between the food industry, authorities at all levels, and researchers (Lukinmaa et 

al. 2004b). Different molecular typing methods enable comparison of L. monocytogenes 

genotypes from food and patients and aid in identifying possible epidemiological links in 

order to pinpoint the causative food. 
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2 REVIEW OF THE LITERATURE 

 

2.1 Listeria monocytogenes 

 

2.1.1 History 

 

In 1911, a Swedish scientist, later a professor in food hygiene, named Hülpers isolated 

bacteria from a liver necrosis in a rabbit. He found that the bacteria were pathogenic for mice. 

He performed different coloring tests, observed growth at different temperatures, and 

performed motility tests. Because Hülpers was unable to identify this bacterium, he called it 

Bacillus hepatica according to the isolation site (Hülpers 1911). Unfortunately, Hülpers’s 

strain was not preserved for later confirmation. The species was later described in 1926 when 

Murray, Webb and Swann isolated bacteria from dead laboratory rabbits and guinea pigs.  

They called it Bacterium monocytogenes because of the monocytosis it caused in the animals 

(Murray et al. 1926). One year later, Pirie isolated the bacterium from wild gerbils with 

“Tiger River Disease” in South Africa, who named it Listerella hepatolytica to honor Lord 

Joseph Lister, and because of the typical liver infections it induced in experimentally infected 

animals (Pirie 1927). These two identical species were named Listerella hepatolyticus. In 

Denmark in 1929, Nyfeldt reported the first confirmed isolation from humans (Nyfeldt 1929). 

In the 1940s, the present name Listeria monocytoges was established (Pirie 1940). 

 

 

2.1.2 Genus Listeria  

  

The genus Listeria, together with the genus Brochotrix, belongs to the Listeriaceae 

family, the order Bacillales, the class Bacilli and the phylum Firmicute 

(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi Benson et al. 2000, Wheeler 

et al. 2000, Garritty and Holt 2001). Today the genus comprises the following seven species: 

L. monocytogenes, L.  innocua, L. ivanovii subsp. ivanovii and, L. ivanovii subsp. 

londoniensis, L. seeligeri, L. welshimeri, L. grayi and only recently described L. marthii 

(Seeliger and Jones 1986, Rocourt et al. 1992, Boerlin et al. 1997, Graves et al. 2009). The 

first genome of L. monocytogenes was sequenced in 2001 (Glaser et al. 2001).  
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 L. monocytogenes is generally considered the only species pathogenic to humans. However, 

some reports note the possibility that L. ivanovii (Lessing et al. 1994, Cummins et al. 1994, 

Snapir et al. 2006, Guillet et al. 2010) and L. grayi cause disease in humans (Todeschini et al. 

1998). According to Todeschini et al. (1998), a severly immunocompromised patient with 

advanced Hodgkin’s disease suffered from bacteremia caused by L. grayi. Ovine and bovine 

infections with L. ivanovii have also been reported (Sergeant et al. 1991, Alexander et al. 1992, 

Gill et al. 1997, Chand and Sadana 1999). L. monocytogenes and L. ivanovii are both ß-

hemolytic on blood agar, but L. ivanovii is characterised by a wider ß-hemolytic zone than that 

of L. monocytogenes.  

 

2.1.3 Isolation  

 

 L. monocytogenes is a ubiquitous bacterium that can be isolated from a variety of 

environmental sources, such as soil, water, sewage sludge, silage, decaying plant material, 

and the feces of humans and animals (Fig. 1) (Husu et al. 1990b, Rocourt 1994, Sahlström et 

al. 2004, Paillard et al. 2005, Ivanek et al. 2006, Lyautey et al. 2007, Kerouanton et al. 2009; 

Mohammed et al. 2010). Isolation methods have improved from direct culturing to cold 

enrichment and further to the selective enrichment of samples. Samples usually contain other 

bacteria as well, which makes isolation of L. monocytogenes challenging. Cold enrichment 

used to take several months to perform, which was clearly too long  (Gray et al. 1948). 

Today selective two-step enrichment broths, such as LEB (Listeria enrichment broth) 

(FDA, NCFA), half-Fraser, and Fraser (ISO, USDA), are in use for isolation from food 

(Lovett et al. 1987, Cook 1998, Fraser and Sperber 1988, McClain and Lee 1988, 

Anonymous 1990, Hitchins 1995). Agar media have developed from colorless tryptose or 

McBride agars, which were examined after incubation with oblique transillumination for the 

presence of characteristic blue colonies, to selective agars such as Oxford, PALCAM 

(polymyxin B, acriflavin, lithium chloride, ceftazidime, aesculin and mannitol), LPM (lithium 

chloride phenyl ethanol moxalactam medium), ALOA® (Agar Listeria according to Ottaviani 

& Agosti), and LMBA (Listeria monocytogenes blood agar medium) and Rapid’L.mono 

(Henry 1933, Lee and McClain 1986, VanNetten et al. 1988, Curtis et al. 1989, Foret and 

Dorey 1997, Ottaviani et al. 1997, Johansson 1998, Jaradat et al. 2002). Selective agars 

contain selective agents, such as various antibiotics, or indicative agents, such as esculin and  
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FIGURE 1. Relationship of L. monocytogenes in the environment and the human risk group 
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ferric substances. Of these, LMBA is very useful, because it contains sheep blood, and 

hemolytic colonies are easily identified and easy to select for confirmation of 

L. monocytogenes (Johansson 1998). 

 

Chromogenic media may be used to enhance the detection of L. monocytogenes 

among many other Listeria sp. colonies on a plate. A few commercial chromogenic 

L. monocytogenes media are available on the market, such as RAPID’L.MONO® (Bio-Rad, 

Marnes la Coquette, France), CHROM agar® Listeria (Mast Diagnostic, Reinfeld, Germany) 

and BCM® Listeria monocytogenes plating medium (Biosynth International, Naperville, 

USA) (Restaino et al. 1999, Allerberger 2003). The detection of L. monocytogenes is based 

on the specific detection of phosphatidylinositol phospholipase C (PIPLC) of 

L. monocytogenes and L. ivanovii, and on the fermentation of xylose. L. monocytogenes 

colonies are mostly PIPLC positive and xylose negative (Allerberger 2003). 

 

 

2.1.4 Identification 

 

Listeria cells are small (0.5 μm in diameter and 1-2 μm long) non-spore-forming regular 

Gram-positive rods with rounded ends, that are sometimes coccoid (Seeliger and Jones 1986). 

Listeria is facultatively anaerobic, catalase positive with few exceptions, and oxidase negative 

(Cepeda et al. 2006). When grown at room temperature (20-25˚C) in liquid media, cells are 

motile due to a few peritrichious flagella. The tumbling motility can be seen in hanging drop 

preparations. Growth occurs best at 37˚C under microaerofilic conditions. Normal growth 

limits are 1-45˚C at pH 4.4-9.6 (the optimum is at pH 7). Some strains can grow at 0.5˚C or 

even at -0.2˚C (Junttila et al. 1988, Walker et al. 1990). Listeria is able to survive in high salt 

concentrations and can grow in 12% (w/v) NaCl and at minimum aw values of 0.90 (Lou and 

Yousef 1999).  

 

After isolation, additional tests are required for the identification of different Listeria 

species. These tests include hemolysis, Gram staining, the catalase test, motility, and the 

fermentation of different sugars (Anonymous 1990, Anonymous 1996). Commercial test kits, 

such as the API Listeria test kit (Bio-Meriéux, Rhone, France), are widely used for 

confirmation (Bille et al. 1992, Fujisawa and Mori 1994). Listeria species can be 

distinguished by differences in hemolysis and acid production in fermentation of sugars such 
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as D-xylose, L-rhamnose, α-metyl-D-mannoside, mannitol, and ribose (Table 1) (Cotoni 

1942, Seeliger and Jones 1986, McLauchin 1987, Farber and Peterkin 1991, Allerberger 

2003). 

  

 

2.1.5 Serotyping 

 

Serotyping was the first typing method used for L. monocytogenes. The serotyping of 

L. monocytogenes is based on agglutination reactions using antisera specific to different 

antigens on the surface of the cells. Antisera are obtained from rabbits immunized with 

different L. monocytogenes serotypes. The serotyping scheme is based on somatic cell wall 

(O) and flagellar (H) antigens. O-antigens are different structures on the cell wall, such as 

lipoteichoic acids and membrane proteins, and H-antigens are different structures of flagellas. 

Patterson recognised O- and H-antigens in 1939 and subdivided L. monocytogenes into four 

serotypes: 1, 2, 3, and 4  (Paterson 1939, Paterson 1940). The current serotyping is based on 

studies by Donker-Voet and Seeliger and was modified and extended into four serogroups 

(1/2, 3, 4, and 7) (Donker-Voet 1966, Seeliger and Höhne 1979, Seeliger 1987). These are 

further subdivided into 13 serotypes (Table 2). Serotype 4bX is a variant of serotype 4b and 

was implicated in an outbreak in the UK that was traced to contaminated pâté (McLauchlin et 

al. 1989, McLauchlin et al. 1991). 

 

It is equally important to identify both O- and H-antigens in determining the correct 

serotype. Serotyping is still used in epidemiological and case studies of L. monocytogenes 

even though its discriminating power is poorer than that of other typing methods, such as 

ribotyping and PFGE, (Farber 1996). Moreover, serotyping is usually of limited value since 

most food and clinical isolates belong to serotypes  1/2a, 1/2b or 4b (McLauchlin et al. 1989). 

The reason for its still common use is historical, since serotyping remains the easiest way to 

of roughly compare strains with older findings. The serotyping of O-antigens is also fairly 

easy and quick to perform. Another reason for the frequent use of serotyping is typeability. A 

WHO multicentre L. monocytogenes subtyping study was reported in 1996, and all 80 of the  

strains studied were typeable (Schönberg et al. 1996). However, problems occurred with the 

inter- and intralaboratory reproducibility of serotyping, varying from 64 to 95% and from 82 

to 100%, respectively. The study emphasized the need for good-quality antisera 

withstandardized strains. 



 

 

TABLE 1. Identification of Listeria species. 

 

Species        β-hemolysis  D-Xylose L-Rhamnose α-Metylmannoside       Ribose         D-Mannitol   

    

L. monocytogenes   +        −                  +        +     −       − 

L. innocua    −                −                      v   +     −        − 

L. ivanovii subsp. ivanovii +a                    +                 −             −           −            + 

L. ivanovii subsp. londoniensis + a                    +          −          −          −       − 

L. seeligeri    +              +                      −    −     −        − 

L. welshimeri      −                 +                      v      +     −         − 

L. grayi             −                −                      v     +     +                + 

L. marthii    −       NK          −              NK    NK      NK 

 

+ = positive 

− = negative 
a = wider hemolysis zone 

v = variable 

NK =unknown  



 

TABLE 2. The serotypes and antigens of L. monocytogenes. 

  

Serotype  O-antigens   H-antigens  

  

1/2a   I, II, (III)   A, B 

1/2b   I, II, (III)   A, B, C 

1/2c   I, II, (III)   B, D 

3a   II, (III), IV   A, B 

3b   II, (III), IV, (XII), (XIII) A, B, C 

3c   II, (III), IV, (XII), (XIII) B, D 

4a       (III), (V), VII, IX  A, B, C 

4ab          (III), V, VI, VII, IX, X        A, B, C 

4b          (III), V, VI,   A, B, C 

4c           (III), V, VII,   A, B, C 

4d         (III), (V), VI, VIII  A, B, C 

4e           (III), V,  VI, (VIII), (IX)  A, B, C 

7          (III),  XII, XIII   A, B, C 

  

( ) = not always present 

 

 

2.1.6 Genotyping 

 

Several DNA-based typing methods are available which can be used for typing 

L. monocytogenes strains (Bille and Rocourt 1996). These methods can be PCR (polymerase 

chain reaction)-based methods, such as RAPD (random amplification of polymorphic DNA) 

(Lawrence et al. 1993) and AFLP (amplified fragment length polymorphism)  (Fonnesbech 

Vogel et al. 2002, Autio et al. 2003, Keto-Timonen et al. 2003).  

 

Other DNA-based methods for subtyping L. monocytogenes include ribotyping 

(Grimont and Grimont 1986), REA (restriction enzyme analysis) (Wesley and Ashton 1991, 

Ericsson et al. 1993),  PFGE (pulsed-field gel electrophoresis) (Ojeniyi et al. 1996, Unnerstad 

et al. 1996, Autio et al. 1999, Giovannacci et al.1999, Senczek et al. 2000), and MLST 

(multilocus sequence typing) ( Meinersmann et al. 2004, Revazishvili et al. 2004). 
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One or more genotyping methods can be combined with phenotyping methods. PFGE 

has been combined with serotyping (Chasseignaux et al. 2001), ribotyping (Autio et al. 1999, 

Lukinmaa et al. 2004a) multilocus enzyme electrophoresis (MEE) (Harvey and Gilmour 

2001), and PCR-based methods (Giovannacci et al. 1999, Fonnesbech Vogel et al. 2002, 

Autio et al. 2003) in order to achieve more information for typing purposes. 

 

 

PFGE typing 

 

PFGE typing is a genotyping method developed by Schwartz and Cantor in 1984 to separate 

large yeast chromosomes (Schwartz and Cantor 1984). The need arose to develop a method to 

separate DNA molecules larger than 50 kilobase pairs (kb), since this is the upper limit for 

migration in conventional gel electrophoresis (Lai et al. 1989). In PFGE, this is overcome by 

using two alternating electric fields. The angle between the electric field is usually 120˚ in 

CHEF (clamped homologous electric field) or 180˚ in FIGE (field inversion gel 

electrophoresis). This technique enables the separation of large DNA up to about 1 000 kb 

(Lognonne 1993).  DNA is usually obtained from cells in solution by digesting their cell walls 

and proteins. To overcome the mechanical breakage of DNA molecules in solution, the cells 

are embedded in agarose before lysis. After lysis and washing away the cell walls and 

proteins, intact DNA is obtained embedded in highly purified agarose. DNA plugs are 

subjected to low-frequency restriction enzymes. Low-frequency restriction enzymes usually 

recognize six to eight base pairs and cut the DNA at the restriction site. The cut DNA 

molecules are usually separated in 0.6-1.5% agarose gel in TBE (Tris-borate EDTA) buffer 

by PFGE. The running time is several hours, usually around 18-24 h.  Known DNA markers 

are included in every gel to enable estimation of the sizes of the fragments and comparison 

between different runs.  

 

After elongation, DNA migrates in the gel in an electric field. When the direction of 

the electric field is changed, the DNA must reorient before it can migrate in this new 

direction. Molecular weight is linked to the time it takes for reorientation. Thus lower 

molecular weight DNA fragments migrate further in the PFGE gel than do fragments of 

higher molecular weight. In a uniform electric field, large DNA molecules migrate at a rate 

independent of their size and they are not resolved by size (Lerman and Frisch 1982). 
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The basic instrumentation includes the gel box, a device for temperature control, a 

switching unit, and a power supply. The switching unit is programmed with the run 

parameters (i.e. voltage, pulse time switch interval times and total running time). When 

increasing the pulse time, larger molecules can be separated (Lognonne 1993). The migration 

of DNA is also temperature dependent and dependent on agarose strength. 

 

The reproducibility, discriminatory power, and ease of interpretation in PFGE are 

excellent (Farber 1996). In a WHO multicenter international typing study of 

L. monocytogenes with PFGE, the agreement data among the four participating laboratories 

varied from 79-90%, probably because all of the laboratories used slightly different run 

parameters (Brosch et al. 1996). Still, this study reconfirmed that PFGE is a very accurate and 

reproducible method for the fine structure comparison and molecular typing of 

L. monocytogenes.  

 

Because L. monocytogenes is characterized by a low G+C DNA (39%) content, it is 

useful to choose restriction enzymes with recognition sequences that contain only G and C 

nucleotides in order to obtain a low-frequent cutting restriction enzyme (Glaser et al. 2001). 

Different rare-cutting restriction enzymes have proved useful for L. monocytogenes. Such 

enzymes are ApaI (GGGCC/C), AscI (GG/CGCGCC), NotI (GC/GGCCGC) and SmaI 

(CCC/GGG), where “/” indicates the restriction site. 

 

PFGE protocols for L. monocytogenes required usually four to seven days for DNA 

plug preparation, cell lysis, restriction enzyme digestion, and gel electrophoresis (Brosch et 

al. 1991, Maslow et al. 1993). A 30-h rapid protocol for L. monocytogenes where time-saving 

steps included the use of bacterial cells obtained directly from the culture plates instead of 

growing them first in liquid medium and harvesting the cells by centrifugation, a pre-lysis 

treatment with lysozyme, a shorter lysis time (2 h), reduced washing times (instead of 

washing for several hours, washing twice with 50-54˚C sterile distilled water for only 10 min, 

followed by four washes with TE buffer for only 15 min), and using minimum restriction 

enzyme digestion times (Graves and Swaminathan 2001). This protocol is standardized and 

used by the CDC PulseNet in the USA, which is a national network of public health and food 

regulatory laboratories established to detect clusters of foodborne disease. The participating 

laboratories exchange normalized DNA fingerprints via the internet.  
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Numerical analysis of restriction enzyme digestion patterns (REDPs) 

 

The REDPs of different strains from PFGE gels can be visually compared to each other 

directly from the gel and then be saved by photographing. This is convenient and fast when 

only a few are compared. When large numbers of REDPs from strains are to be compared, 

saving the gel image in a data file enables computer-assisted numerical comparison. The 

REDPs bands are then normalized to each other with the help of the bands from the marker 

from each gel. The similarity between all pattern pairs can be calculated using the Dice 

coefficient. Large-scale grouping analysis such as UPGMA involves the creation of 

dendrograms or other means to reveal groups of related organisms.  

 

2.2 L. monocytogenes in food processing 

 

The fact that the populations in Western industrialized countries live longer lives and add to 

the proportion of immunocompromized individuals is a challenge for the food industry. The 

food industry needs to try to reduce L. monocytogenes levels in the foods they produce, 

especially in ready-to-eat foods. Guidelines are available on how to prevent foodstuffs from 

becoming contaminated in food processing plants and how to live with this pathogen in the 

plant (Tompkin et al. 1999, Anonymous 2000a). 

 

The ecology of L. monocytogenes in food industry plants has been studied in order to 

trace the potential sources of contamination and the conditions where it can survive. Factors 

such as cross-contamination, the psychrotrophic nature of L. monocytogenes, its ability to 

adhere to various surfaces in the plant, biofilm formation, persistent contamination and 

inadequate cleaning and disinfection enable the persistent contamination of food processing 

plants (Unnerstad et al. 1996, Autio et al. 1999, Lundén et al. 2000, Lundén et al. 2002, 

Borucki et al. 2003, Lundén et al. 2003a, Lundén et al. 2003b, Peccio et al. 2003, Holah et al. 

2004, Wulff et al. 2006, López et al. 2008b, Pappelbaum et al. 2008 ). 

 

 L. monocytogenes strains posses the variable ability of a glutamate decarboxylase 

(GAD) acid resistance system which increases the pH in the cell cytoplasm and which could 

explain why certain strains are more resistant to an acid environment and survive in 

glutamate-rich acid foods (Cotter et al. 2001a, Cotter et al. 2001b, Hill et al. 2002). Dykes & 
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Moorhead (2000) have shown that the acid stress response is needed during the infection 

process since all strains from clinical sources, though only 87% of strains from ready-to-eat 

meat products, were capable of surviving pH 2.4 for 2 h (Dykes and Moorhead 2000). This 

could also explain why not all L. monocytogenes strains encountered in the food processing 

environment have caused infections in humans (Lukinmaa et al. 2004a).  

 

 

2.2.1 L. monocytogenes in dairy processing 

 

Dairy processing includes the processing of raw milk and further processing into products 

such as butter, cheese, yoghurt and ice cream. The prevalence of L. monocytogenes in raw 

milk varies between 1-7% (Husu et al. 1990, Gaya et al. 1998, Waak et al. 2002, Meyer-

Broseta et al. 2003, Muraoka et al. 2003). Raw milk is usually pasteurized, which is 

considered listericidal. Recontamination of dairy products could occur after heat-treatment.  

 

In a study performed in 21 dairy plants, the overall prevalence of L. monocytogenes on 

equipment and in the environment was 9.3% (Pritchard et al. 1995). The prevalence was 

higher in the dairy environment (14.7%) than on the equipment (5.1%). During 1990-1999, 

the overall prevalence in the environment and product samples of Swiss cheese processing 

plants was 4.9% (Pak et al. 2002). The highest proportion of positive samples (9.5%) was 

observed in water samples used for cheese washing, followed by cheese surface swabs 

(5.0%). No positive samples were obtained from cream, ice cream, milk powder, yoghurt, or 

fresh cheese. In a French cheese plant examined for L. monocytogenes contamination, 

L. monocytogenes was isolated from four varieties of cheese, cheese brines, processing 

equipment, and the plant environment (Jacquet et al. 1993). No L. monocytogenes was  

isolated before the ripening and rind washing stages of the process. The contamination of 

cheeses probably took place during ripening since strains from cheeses and processing 

equipment (shelves) were of the same serotype and phagotype. All strains from this cheese 

plant were of the same ribotype, suggesting that they were all of clonal ancestry. A 

Scandinavian cheese-producing dairy was contaminated by a L. monocytogenes strain of 

serotype 3b for at least seven years (Unnerstad et al.1996). The same strain, which was 

characterized by three restriction enzymes (ApaI, AscI and SmaI) with PFGE typing, was 

found in the wash water of the cheeses, in the cheese itself, and the production environment.  
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The prevalence of L. monocytogenes in ice cream is usually quite low (0-1.8%) 

(Busani et al. 2005, Cabedo et al. 2008). In a study in Hungary, the overall prevalence of 

L. monocytogenes in samples taken from food production and marketing companies during 

random inspections was 16.2% (18/613) and 1.8% in ice cream (2/43) (Kiss et al. 2006). The 

serotypes found in ice cream were 1/2a (14/18) and 4b (4/18), and those in butter were 

serotypes 1/2b and 4ab (one strain each). The prevalence of L. monocytogenes in butter was 

studied in 2004 in the UK on production, retail and catering premises during a two-month 

period. The prevalence was low, only 0.4% (13/3229) of these butter samples tested positive 

for L. monocytogenes, and the level was < 10 cfu/g in all samples (Anonymous 2005). 

 

 

2.2.2 L. monocytogenes in poultry meat processing 

 

 Poultry meat was the first reported meat product to harbor L. monocytogenes (Gitter 1976). In 

a literature review, Jay (1996) reported an overall prevalence of 17% for fresh and frozen 

poultry meat during the period 1984-1994 in nine countries (Jay 1996). A similar figure 

(17.4%) was reported in a Danish study of raw turkey meat (Ojeniyi et al. 2000) 

(Gudbjornsdottir et al. 2004). A Swedish study followed the 11 largest broiler 

slaughterhouses in Sweden for one year (September 2002 to August 2003) and 254 carcass 

samples were taken (Lindblad and Lindqvist 2003). Of these, 29% tested positive for 

L. monocytogenes. The overall prevalence at the six largest broiler slaughterhouses was 21% 

varying between 0 and 55% with no seasonal variation. Others have reported higher 

prevalences (27-88%) in poultry meat (Skovgaard and Morgen 1988, Rorvik and Yndestad 

1991, MacGowan et al. 1994, Uyttendaele et al. 1997, Samelis and Metaxopoulos 1999, Vitas 

et al. 2004, Praakle et al. 2006, Ceylan et al. 2008).  

 

In July-October 2003 in Finland, 169 marinated broiler meat preparation samplesand 

58 marinated turkey meat preparation samples from the retail level in the city of Helsinki 

were analyzed for L. monocytogenes (Pönkä et al. 2004). Altogether 38% of the marinated 

broiler meat preparations and 7% of the turkey meat preparations were contaminated with 

L. monocytogenes. The quantification analyses revealed that in 80% of these samples, the 

levels of L. monocytogenes were < 10 cfu/g. Only three samples had L. monocytogenes levels 

>100 cfu/g, and the highest finding was 240 cfu/g. The prevalence at the retail level for the 

five different manufacturers of these marinated poultry meat preparations varied between 0-
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62% (Pönkä et al. 2004). In another Finnish study in 2002-2003, the overall prevalence of of 

L. monocytogenes in marinated broiler legs from retail stores was 39 % (Aarnisalo et al. 

2008). 

 

A French study found that the overall prevalence of L. monocytogenes in poultry 

processing environments was 18.3%, and in the equipment, 16.4 %, and in the finished raw 

products, 40% (Chasseignaux et al. 2001). In a Nordic study, the overall prevalence was 22% 

in both the poultry processing plants and the final raw product. Lopez et al. (2008a) found 

that the overall prevalence in a Spanish broiler abattoir was 31%. The French study examined 

the environmental factors associated with L. monocytogenes contamination on working and 

non-working surfaces (floors, walls, sewers) in raw poultry or pork processing plants 

(Chasseignaux et al. 2001). The authors identified a risk profile for L. monocytogenes 

contamination, where uneven (granular, stripped, or damaged) resin or plastic surfaces with 

organic residues, a near neutral pH (6-8), a low temperature (< 4-12ºC), and high humidity 

(70-80% or more) were associated with contamination. L. monocytogenes is apparently not a 

common airborne contaminant in poultry slaughtering environments, since a study of airborne 

microbes found none (Ellerbroek 1997, Gudbjornsdottir et al. 2004).  

 

The ecology of L. monocytogenes in two French poultry and pork processing plants 

was studied with PFGE (Chasseignaux et al. 2001). This same French study found 50 

combined genotypes and showed that some clones could survive for several months. The 

authors concluded that contamination may be due to contaminated raw materials, bacterial 

spread, and ineffective cleaning procedures. Another study used RAPD to characterize 113 

isolates from a chicken processing plant and found one particular RAPD type in the 

evisceration area, the processing area, and in the final product (Martinez et al. 2003). The 

contamination lasted for at least eight years. One Spanish broiler abattoir was surveyed for 

1.5 years, and 14 different pulsotypes were found of serotypes 1/2a and 1/2b; the strains 

found on the carcasses were also found in the evisceration area (Lopez et al. 2008a). One 

L. monocytogenes PFGE type found in marinated broiler legs from retail stores in Finland in 

2002-2003 that were produced at three different broiler producers but most of the PFGE types 

were producer-specific (Aarnisalo et al. 2008). 
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2.2.3 L. monocytogenes in fish processing 

 

The prevalence of L. monocytogenes in raw fish varies between 0-86% (Jemmi and Keusch 

1994, MacGowan et al. 1994, Rørvik et al. 1995, Vaz-Velho et al. 1998, Nørrung et al. 1999, 

Dauphin et al. 2001, Fonnesbech Vogel et al. 2001, Hoffman et al. 2003, Medrala et al. 2003, 

El-Shenawy and El-Shenawy 2006, Klaeboe et al. 2005, Markkula et al. 2005, Miettinen and 

Wirtanen 2005, Chou et al. 2006, Soultos et al. 2007, Cruz et al. 2008, Parihar et al. 2008a). 

One Finnish study in which samples of gills, viscera, and skin were taken separately from 

unprocessed fresh rainbow trout from fish farms in lakes and sea areas found that rainbow 

trout was contaminated almost exclusively in the gills and only sporadically in the skin and 

viscera (Miettinen and Wirtanen 2005). The L. monocytogenes contamination of farmed fish 

is linked to the fish farm environment, such as brook waters, as well as to rainy weather 

periods (Miettinen and Wirtanen 2006). 

 

 The prevalence of L. monocytogenes in different fish products varies between 0-78% 

(Lyhs et al. 1998, Klaeboe et al. 2005, Medrala et al. 2003, Cruz et al. 2008). During 1992-

2000, the overall prevalence of L. monocytogenes in gravad salmon imported to Switzerland 

was 38% (Jemmi et al. 2002). In a Swedish study, 7% (35/467) of fish products in 2001 tested 

positive for L. monocytogenes (Rosengren and Lindblad 2003). These fish products includeds 

cold-salted (“gravad”), cold-smoked, or hot-smoked fish products. The majority of the 

samples had levels < 10 cfu/g. Only 1% (6/46) had levels of L. monocytogenes > 100 cfu/g. 

The highest level was 6 200 cfu/g. “Gravad” fish products were the most contaminated, since 

14% (n=126) tested L. monocytogenes positive. Cold-smoked fish products were less 

contaminated, since 8% (n=80) tested positive for L. monocytogenes. The prevalence was 

lowest in hot-smoked fish products, with 3% (n=129) in 2001 (Rosengren and Lindblad 

2003). An interesting seasonal variation between 5-20% was observed in all fish products 

samples; more positive samples were found in autumn (September-November) than in the 

other seasons. This seasonality was especially noted in “gravad” fish products, with a 4% 

prevalence in summer (July-August) and a 38% prevalence in autumn (September-November) 

(Rosengren and Lindblad 2003). In Poland, 78% of vacuum-packed sliced salmon was 

contaminated with L. monocytogenes (Medrala et al. 2003). In 2001-2004 in France, the 

prevalence in cold-smoked salmon from nine producers was 10% (Beaufort et al. 2004). The 

prevalence varied between 0-41% among producers.  
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A survey of L. monocytogenes in vacuum-packed cold-smoked fish products 

originating from 37 producers in Finland in 2001 showed that 13% of 356 samples tested 

positive on the use-by date. In most of the samples, the level was < 100 cfu/g, and the highest 

detected level was 25 000 cfu/g (Hatakka et al. 2002). In 2004 in Finland, L. monocytogenes 

was isolated from 17% (9/279) of cold-smoked fish and from 14% (41/285) of “gravad” fish 

at retail (Anonymous 2005). In the same survey, levels exceeding 100 cfu/g were found in 3% 

(9/279) of cold-smoked fish and 2% (5/285) of “gravad” fish at retail. In 2008, the prevalence 

in a Finnish survey was 16% (10/63) for “gravad fish” and 8% (5/64) for cold-smoked fish 

(Åberg et al. 2008). Of the 15 positive samples, 14 had levels of < 10 cfu/g, and 1 had a level 

of 20 cfu/g. The majority of these samples were taken from retail stores (105/127) and 

analyzed on the use-by date.  

 

Serotype 1/2a is the most common finding in fish and fish products; as much as 80% 

of isolates are of this serotype (Autio et al. 2002, Jemmi et al. 2002, Gudmundsdóttir et al. 

2005, Corcoran et al. 2006). In a Polish study, however, 92% of isolates from fish products 

from one fish processing plant were of serotype 4 (Medrala et al. 2003).  

 

Norton et al. (2001) used ribotyping to track possible contamination sources in three 

cold-smoked fish processing plants and found that raw materials (raw fish) and the processing 

environment were the potential contamination sources of finished products. Rørvik et al. 

(1995), using MEE as a method of characterization,  found in a contamination study of a 

salmon slaughterhouse and smoked salmon processing plant that contamination of the final 

products occured during processing. However, the same MEE electrophoretic type (ET-6) 

was also isolated from an environmental sample in the salmon slaughterhouse, and the 

original site of contamination could have been there. Job rotation was the strongest risk factor 

for L. monocytogenes contamination at fish smokehouses (Rørvik et al. 1997). 

 

A study of ten different Danish fish smokehouses, obtained 16 different RAPD 

profiles (Fonnesbech Vogel et al. 2002). Different RAPD types dominated in cold-smoked 

salmon products from different smokehouses, but some RAPD types could be isolated from 

several smokehouses. The authors concluded that there was a possible persistence of closely 

related strains of L. monocytogenes. Fonnesbech Vogel et al. (2001) studied two Danish fish 

smokehouses for L. monocytogenes contamination of cold-smoked rainbow trout, and the 

primary sites of contamination were the brining and slicing areas. Based on RAPD typing 
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results, contamination of the processing equipment and environment of one of the 

smokehouses from raw fish could not be excluded. The same RAPD type was found over a 

four-year period, indicating that an established in-house strain persisted and was not 

eliminated by routine hygienic procedures (Fonnesbech Vogel et al. 2001).  

 

Autio et al. (1999) found two major L. monocytogenes contamination sites, the brining 

and slicing of rainbow trout fillets, in a cold-smoked rainbow trout processing plant. Only 1 

sample in 60 raw fish samples tested positive for L. monocytogenes, harboring a PFGE type 

different from the strains isolated from the environment and product samples. PFGE types 

were found in the brining and slicing machines were similar to those found in ready-to eat 

products. Researchers in France studied L. monocytogenes contamination with PFGE and 

concluded that the cold-smoked salmon was contaminated from the processing environment 

(Dauphin et al. 2001). In Japan, the findings of a contamination study suggested that the 

contamination of cold-smoked fish occured during slicing in a processing plant (Nakamura et 

al. 2006). 

 

The PFGE types of serotype 1/2a found in water and sludge samples from two 

rainbow trout farms in Finland were the same as those found in fish products on the retail 

market (Katzav et al. 2006). Markkula et al. (2005) found the same PFGE types in raw and 

processed rainbow trout from a fish processing plant. These results suggest that 

L. monocytogenes contamination in fish processing plants could originate from the influx of 

contaminated raw fish. 

 

 

2.3 L. monocytogenes infections in humans 

 

2.3.1 Listeriosis 

 

 Listeriosis is a severe invasive foodborne infection in humans caused by L. monocytogenes 

and that predominantly leads to sepsis or meningitis or both, and only seldom causes brain 

stem encephalitis (Antal et al. 2005). Additional clinical illnesses included are pneumonia, 

endocarditis, septic arthritis, and abscesses (Hof 2001, Schett et al. 2005). Pregnant women 

may suffer from flu-like symptoms and give birth prematurely. Immunocompromised 

individuals, such as recipients of organ transplants, are at higher risk for listeriosis (Girmenia 
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et al. 2000, Reek et al. 2000). The first reported cases of human listeriosis occured in 1929 in 

Denmark (Nyfelt 1929).  

 

Healthy humans seldom carry L. monocytogenes in their feces or throats. Heir et al. 

(2004) studied samples from employees in three meat plants; no L. monocytogenes was found 

in 70 throat swab or 45 feces samples (Heir et al. 2004). An estimated 1-5% of the normal, 

asymptomatic population are believed to carry L. monocytogenes in their feces (Hof 2001). 

 

An estimated 2 500 L. monocytogenes infections occur in the USA each year with a 

mortality of 28% (Mead et al. 1999). In 2007, as many as 1 554 confirmed cases of listeriosis 

were reported from EU member states, which makes the reported incidence in these countries 

0.3 cases per 100 000 population (Anonymous 2009). In Finland, between 18 and 46 human 

listeriosis cases were reported to the KTL (Finnish National Public Health Institute) or since 

2009 to THL (the National Institute for Health and Welfare) to the National Infectious 

Disease Register between 1995 and August 2009, and the incidence varied from 0.34 to 1.03 

cases per 100 000 population (www3.ktl.fi/, reported as of 28 August 2009) (Table 3). A 

seasonal trend seems evident in these reported human listeriosis cases in Finland between 

1995 and August 2009 (Fig. 2). The number of reported human listeriosis cases began to rise 

in July and remained high until January. 

 

 

2.3.2 Febrile gastroenteritis 

 

The intestinal tract is the major port of entry for L. monocytogenes from contaminated food. 

Acute enteritis may be the only symptom of infection or may precede typical symptoms of 

listeriosis, such as sepsis. Febrile gastroentritis often goes undocumented, especially if it fails 

to progress to meningitis or sepsis, or is simply overlooked in the presence of a life-

threatening infection of the central nervous system (Hof 2001). A case of febrile 

gastroenteritis from salted mushrooms followed by sepsis occurred in Finland (Junttila and 

Brander 1989). The acute onset of symptoms (severe abdominal pain, watery diarrhea, and 

fever) resulted from severe contamination of the mushrooms (3.5 x 106). L. monocytogenes 

was cultured from a blood sample from the patient.  
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TABLE 3. Cases of human listeriosis reported to the THL National Infectious Disease Register in 

Finland between 1995 and 2009. 

 

 

Year  Human listeriosis cases  Incidence/100 000 population 

   

__________________________________________________________________________________ 

1995 34    0.67 

1996 29    0.57  

1997   53    1.03 

1999   46    0.89 

1999   46    0.89 

2000   18    0.35 

2001   28    0.54 

2002   20    0.34 

2003   42    0.81 

2004   35    0.67 

2005   37    0.71 

2006   46    0.88 

2007   40    0.76 

2008   40    0.75 

2009   33    0.62 

 

 

 

The literature describes foodborne L. monocytogenes febrile gastroenteritis cases with no 

progression to severe forms of listeriosis (Ooi and Lorber 2005). All kinds of foods have been 

implicated as vehicles (Table 4), most of which were severely contaminated with 

L. monocytogenes in the range of 106 to 108 cfu/g. A high concentration of L. monocytogenes 

may be needed to cause illness in healthy individuals, but the illness fails progress to an 

invasive form. 

 

 



 

 

FIGURE 2. Cases of human listeriosis in Finland between 1995 and 2009 by month reported to the THL National Infectious Diseases Register 

(www3.ktl.fi/stat). 
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TABLE 4. Reported human L. monocytogenes gastroenteritis cases. 

 

Country, year  Cases       Food, cfu/g, serotype             Reference 

            _____________________________________________________________________________________________________________________ 

 

USA, 1989           10          Shrimp, NK, 4b                    Riedo et al. 1994 

Italy, 1993                  8           Rice salad, NK, NK                   Salamina et al. 1996 

USA, 1994                      48                     Chocolate milk, 108-109 cfu/ml, 1/2b   Dalton et al. 1997 

Canada, 1996                2             Imitation crab meata, 2.1×109 cfu/g,1/2b  Farber et al. 2000 

Italy, 1997             1566            Corn and tuna salad, >106, 4b                Aureli et al. 2000 

New Zealand, 2000    7              Ready-to-eat meat, 1.8×107 cfu/g, 1/2       Sim et al. 2002      

New Zealand, 2000  21            Ready-to-eat meat, >2.5×109 cfu/g, 1/2    Sim et al. 2002   

USA, 2001               16             Precooked turkey, 1.6×109 cfu/g, 1/2a        Frye et al. 2002  

Sweden, 2001      48             Soft cheese, 3.0×101-6.3×107 cfu/g, 1/2a  Carrique-Mas et al. 2003 

Japan, 2001                     28                     Cheese, <3.0-4.6×107/g, 1/2b                Makino et al. 2005 

Belgium, 2001                 1                       Ice cream cake, NK, 4b                                   Yde and Genicot 2004 

Austria, 2008                  12                      Jellied pork, 3.2×102-3.0×104, 4b    Pichler et al. 2009 

               

NK= unknown 
a  artificially flavored Alaskan pollock 



2.3.3 Foodborne outbreaks 

 

The first described large human foodborne outbreaks occurred in Germany in 1949-1957 after  

the consumption of contaminated raw milk and milk products (Seeliger 1961). In 1959 in 

Sweden, four cases of listeriosis occurred where poultry meat was the suspected vehicle, but 

no isolates were obtained (Olding and Philipson 1960). The first well-documented foodborne 

invasive infections caused by L. monocytogenes were reported in 1983 and suggested that the 

outbreak resulted from contaminated coleslaw (Schlech III et al. 1983). From 1983 onwards, 

several foodborne epidemics of human listeriosis have been reported in North America and 

Europe. Typical foods include soft cheeses and dairy products, pâtés, sausages, cold cuts, 

smoked fish and salads. Many of these food items are minimally processed ready-to-eat 

foods. 

 

The first well-documented case of human listeriosis from poultry meat occurred in 

England in 1988, where cooked chicken served as the vehicle (Kerr et al. 1988). The first 

documented case in the USA from a poultry meat product was a cancer patient who 

contracted the disease from a turkey frank. The level of contamination exceeded 1100 cfu/g 

from an opened package in the patient’s home (Wenger et al. 1990). Other contaminated meat 

products, such as pâté, rillettes, frankfurters, or cold cuts, have been incriminated in 

epidemics since the 1990s (McLauchlin et al. 1991, Goulet et al. 1998,  Anonymous 2000b, 

Attaran et al. 2008). Fish and fish products have also been recognized as causative agents of 

listeriosis (Ericsson et al. 1997, Farber et al., 2000, Tham et al. 2000). Milk and milk 

products, such as soft cheese, have been implicated several times as sources of infection 

(Fleming et al. 1985, Bille 1990, Cook et al. 2004, Lundén et al. 2004). Frozen ice cream 

cakes and butter belong to more unusual milk products that have been reported as sources of 

human listeriosis (Cook et al. 2004, Yde and Genicot 2004). 

 

2.3.4 Tracing L. monocytogenes outbreaks 

 

Characterizing L. monocytogenes strains from sporadic or epidemic outbreaks of 

listeriosis is necessary because it is an essential part of the epidemiological investigation. 

Typing food isolates and creating an electronic library of different genotypes enables later 

comparison with human strains in the event of a suspected listeriosis outbreak. A national 

Finnish electronic network for the comparison of PFGE profiles of L. monocytogenes has 
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been established in order to enable the faster investigation of possible foodborne outbreaks 

(Rantala et al. 2001). To be effective in tracing a particular isolate incriminated in an 

outbreak, it is useful to combine both phenotypic and genotypic characterization methods or 

to use several genotyping methods (Sauders et al. 2001, Jaradat et al. 2002).  

 

PulseNet is a network of public health and regulatory laboratories in which all 50 US 

state and Canadian public-health laboratories participate (Graves and Swaminathan 2001, 

Gerner-Smidt et al. 2006, Pagotto et al. 2006). PFGE patterns from clinical specimens or food 

products are transmitted electronically to the participating laboratories. The detection of 

indistinguishable patterns alerts the public health system to the possibility of an outbreak, 

which is unintentional, but could also be deliberate as part of a biological terrorist attack on 

the food supply (Sobel et al. 2002). A feasibility study of PulseNet Europe aimed to identify 

European laboratories willing to participate in the surcveillance (Martin et al. 2006). 

 

Before characterization can be performed, one must first isolate L. monocytogenes 

from different samples. Ideally food samples should be analyzed with both direct plating and 

after an enrichment method. In an ideal setting, many isolates should be confirmed from one 

sample for further characterization, since in some cases different strains will be isolated from 

the same sample; some reports describe this when PFGE typing has been used (Danielsson-

Tham et al. 1993, Loncarevic et al. 1996, Ericsson et al. 1997, Autio et al. 1999, Autio et al. 

2000, Dauphin et al. 2001). The enrichment method itself may favor some L. monocytogenes 

strains and L. innocua, whereas other strains in the sample remain undetected. This has been 

reported for the University of Vermont medium where strains of serotype 1/2a outgrew strains 

of serotypes 1/2b and 4b (Bruhn et al. 2005). Moreover, L. innocua overgrowing 

L. monocytogenes during enrichment makes isolation of L. monocytogenes difficult 

(Johansson 1998, Bruhn et al. 2005). 

 

One report described two different L. monocytogenes strains from a patient with fatal 

listeriosis, where different PFGE types were found from the blood and meninges (Tham et al. 

2002). Recovering two different PFGE types from a single blood sample from a listeriosis 

patient is also possible (Tham et al. 2007). 
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3 AIMS OF THE STUDY 

 

This thesis focused on the use of serotyping and PFGE typing of L. monocytogenes isolated 

from food processing plants and human foodborne infections. The main objectives were the 

following: 

 

1.  to study with serotyping and PFGE typing L. monocytogenes contamination in two 

types of food processing plants: an ice cream plant and  two broiler abattoirs (I, II); 

 

2.  to characterize with serotyping and PFGE typing isolates from Finnish human 

invasive L. monocytogenes infections from 1990-2001 (III); 

 

3. to study with serotyping and PFGE typing human foodborne L. monocytogenes 

outbreaks of febrile gastroenteritis or listeriosis (IV-V); 

 

4.  to evaluate the use of serotyping and PFGE typing in identifying human foodborne 

L. monocytogenes outbreaks (III-V). 
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4 MATERIALS AND METHODS 

 

4.1 Sampling (I-V) 

 

Sampling for L. monocytogenes in study I was carried out in an ice cream factory during the 

years 1990-1997. During these eight years, a total of 2 544 samples were taken from the 

production environment and from the ice-cream produced. Of these 2 545 samples, 1 320 

were taken from the production environment or equipment and 1 225 from either the non-

pasteurised raw materials, such as chocolates or nuts, or the ice cream. Samples from the 

environment and equipment were taken from the floors and floor drains, the outer and inner 

surfaces of the whipping, filling, molding and packaging machines, the conveyor belts, and 

freezing tunnels. With the exception of the floor drains, all sampling sites in the production 

environment and equipment were swabbed with several cotton swabs or non-toxic sterilized 

sponges moistened with 0.1% peptone-0.85% saline. After sampling, the swabs or sponges 

were soaked in 0.1% peptone-0.85 % saline. Samples taken from the floor drain consisted of 

100 ml of water taken from the drains before sanitation. Product samples were taken from the 

finished products and transported frozen to the laboratory. Of the product samples, 39 were 

pooled from 3 or 5 subsamples. 

 

Sampling in study II was performed at two broiler abattoirs and at two associated 

broiler processing plants, which were located separately from the abattoirs. The sites were 

sampled three times in 1996 at either one- or two-week intervals, resulting in 498 samples. 

The process was assessed throughout, beginning with dirt from the broiler transportation 

crates and concluding with the ready products: either raw broiler pieces from the abattoirs or 

raw macerated broiler meat and cooked ready-to-eat broiler products from the broiler 

processing plants. 

 

Samples from the broiler abattoir environment in study II were taken with gauze 

sponges moistened with Listeria Enrichment Broth (Oxoid, Basingstoke, UK). The area 

sampled was 20 x 20 cm. When possible, organic material was included in the sample. The 

gauze sponges were placed into sterile plastic bags. Water samples were collected in sterile 

plastic jars. Neck skin samples were taken with sterile scissors and put into a sterile bag. 
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Gloves from workers at the packaging area were rinsed with sterile water into a sterile plastic 

bag.  

 

Some of the 498 samples in study II were pooled together and a total of 127 analyses 

were carried out for L. monocytogenes. Before analysis, 30 packaged raw broiler meat 

samples taken from the broiler abattoirs and 25 packaged ready-to-eat broiler product samples 

taken from the broiler processing plant were kept until the use-by date in order to reveal the 

prevalence of Listeria contamination in them prior to cooking and consumption.  Small pieces 

of the raw or processed broiler products were cut from the surface with sterile scissors to 

make a 25-g sample.  

 

The retail level was studied in 1997 and 1998 by taking 61 sample pieces of raw 

broiler from retail stores (II). Analyses for L. monocytogenes of the raw broiler pieces in 

study II began the purchase day for samples which had been sold unpackaged, or on the sell-

by date for packaged samples. Each broiler piece sample was placed in a sterile plastic bag, to 

which was added 50 ml of peptone (0.1%)-saline (0.85%). The broiler part in the plastic bag 

was then macerated by hand; 25 ml of this peptone-saline solution was then used for the 

enrichment procedure. 

 

During 1990-2001, clinical microbiology laboratories isolated 314 L. monocytogenes 

strains from human clinical infections and submitted them to KTL (now THL) (Helsinki, 

Finland) for verification and serotyping of O-antigens (III). Of these isolates, 25 were from 

outbreak-associated human L. monocytogenes infection cases associated with butter, from 

June 1998 to April 1999 (V). 

 

In 1997, five healthy persons fell ill with gastroenteritis, experiencing nausea, 

abdominal cramps, and diarrhea within 27 h after eating a meal containing vacuum-packed 

cold-smoked rainbow trout. Based on patient interviews and a questionnaire, the consumed 

fish product seemed a very likely vehicle of food poisoning. A vacuum-packed cold-smoked 

rainbow trout sample from the same production lot was obtained from the same retail store 

from where the incriminated fish had been purchased. Stool samples were taken on the day 

after the onset of symptoms. Two additional stool samples were studied from two patients 

involved in the outbreak of febrile gastroenteritis (IV).  
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In study V 13 samples of butter from the hospital kitchen and 139 samples of butter 

from the dairy and wholesale store were analyzed for L. monocytogenes, as were an additional 

430 environmental samples from the dairy. 

 

 

4.2 Isolation of L. monocytogenes from food processing plants (I-II), stool samples (IV), 

and food (I-II, IV-V) 

 

Altogether 25 ml of buffer (including the swabs or sponges) and 25 ml of the drain water 

sample or 25 g of the sample (excluding the environmental gauze sponges, which were not 

weighed in study II) were put in 225 ml of Listeria Enrichment Broth (Oxoid, Basingstoke, 

UK or LabM, Bury, UK) and blended (I, II). The isolation method of the Nordic Committee 

on Food Analysis (NCFA) was followed according to the single stage enrichment procedure 

(Anonymous 1990) (II). The stool sample swabs were dipped in 9 ml of Listeria Enrichment 

Broth (IV). The Listeria Enrichment Broth was incubated at 30°C for 48 h. In study V, 

samples of 1 or 25 g of butter were added to half Fraser broth in a proportion of 1:9, and after 

incubation at 30˚C for 24 h, an aliquot of 0.1 ml was transferred to the Fraser broth and 

incubated at 37˚C for 24 h according to the ISO method (Anonymous 1996). 

 

After 24-48 h of incubation, the enrichment broth was streaked with a sterile cotton tip 

onto Listeria-selective Palcam agar plates (Merck, Darmstadt, Germany or LabM) (I,V), 

Oxford plates (Oxoid) (II, IV) or LMBA plates (trypticase soy agar base [Difco, Detroit, 

Mich.], 10 g/l of lithium chloride, 10 mg/l of polymyxine B sulfate [Sigma Chemicals, St. 

Louis, Mo.], 20 mg/l of ceftazidime [Abtek Biologicals Ltd, Liverpool, England], 5% sterile 

defibrinated sheep blood) and incubated for 48 h at 37°C. After 24-48 h of incubation at 

37°C, the plates were examined for typical Listeria colonies of which one to ten were cultured 

on horse or sheep blood agar plates, and in study I, on TSA (tryptone soya agar, LabM).  

 

Colonies which were hemolytic on LMBA (V) or blood agar (I, II) or showed a 

typical bluish sheen on TSA (I) were confirmed by Gram stain, catalase test, and motility at 

25°C by growing them overnight in BHI (brain heart infusion) broth (Oxoid) (II). In study I, 

these colonies were tested for the fermentation of mannitol, salicin, xylose, α-methyl D-

mannoside, and rhamnose. In study II, IV, and V, API-Listeria kits (Bio-Meriéux; Rhone, 

France) were used for Listeria species identification.  
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4.3 Serotyping of L. monocytogenes 

 

The serotyping scheme followed was that of Seeliger and Höhne (1979). Serotyping was 

performed using commercial Listeria antisera (Denka Seiken, Tokyo, Japan) as described by 

the manufacturer (Anonymous 1995) (V) or with the modification of incubating the strains at 

26°C instead of 30°C in semi-liquid 0.2 % BHI agar in Craigie’s tubes before determining the 

H-antigens (I-V) or when determining the O-antigens by heating the bacterial suspension in 

NaCl at 100°C for 1 h, instead of 121°C for 30 min (III). All isolates were serotyped in 

studies I and III-V, and one isolate representing each PFGE type was serotyped in study II.  

 

 

4.4 PFGE typing of L. monocytogenes 

 

4.4.1 DNA isolation (I-V) 

 

In studies I-III, pure cultures were grown on horse blood agars for 24 h at 37°C. A single 

colony was inoculated into 5 ml of BHI broth (Oxoid, Basingstoke, UK) and incubated 

overnight at 37°C. DNA isolation was performed as described by Maslow et al. (1993) with 

the modifications described by Björkroth et al. (1996). Briefly, cells from overnight BHI 

broth (Oxoid) cultures were mixed with an equal volume of 1.2% (V) or 2% (I-IV) (w/v) low 

melting temperature agarose (InCert agarose (I-IV) or Sea Plaque (V), FMC Bioproducts, 

Rockland, ME, USA). Instead of using insert molds, as in study V, GelSyringe dispensers 

(New England Biolabs, Beverly, Mass., USA) were used according to the manufacturer’s 

instructions (I-IV). In order to obtain complete cell lysis 10 U/ml of mutanolysin (Sigma, St. 

Louis, USA) were added to the lysing solution (I-IV). The inactivation of proteinase K 

(Sigma) and restriction endonuclease digestion of the agarose-embedded DNA was performed 

as described by New England Biolabs. 

 

4.4.2 Macrorestriction analysis with PFGE (I-V) 

 

Three rare-cutting enzymes, ApaI (I, II, V), AscI (I-V) and SmaI (I, III) (New England 

Biolabs, Beverly, USA), previously found suitable for L. monocytogenes characterization 
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were used for cleaving of the DNA (Brosch et al. 1991, Buchrieser et al. 1991, Howard et al. 

1992, Buchrieser et al. 1993, Brosch et al. 1994, Moore and Datta 1994 and Brosch et al. 

1996). The samples were electrophoresed through 1.0% (I-IV) or 1.2% (w/v) (IV) agarose gel 

(SeaKem Gold, FMC Bioproducts) (I-IV) or  through Pronadisa D-5 (Hispanlab, Madrid, 

Spain) (V) in 0.5 x TBE (45 mM Tris, 4.5 mM boric acid, pH 8.3, and 1 mM sodium EDTA) 

at 200 V at 10ºC using a Gene Navigator system with a hexagonal electrode (Pharmacia, 

Uppsala, Sweden) (I-IV) or a CHEF-DR III Variable Angle Pulsed-field Electrophoresis 

System (Bio-Rad Laboratories, Richmond, CA, USA) at a  120º angle  (IV). In study V, 

CHEF Mapper™ or CHEF-DR systems (Bio-Rad Laboratories) were used for 

electrophoreses. ApaI and AscI restriction fragments were resolved with pulse times linearly 

ramping from 0.5 to 29.5 s over 20 h   (I, II, IV) or from 1 to 35 s over 18 h (III) or, as in 

study IV,  AscI 1 to 35 s for 18 h and ApaI 1 to 15 s for 18 h, and in study V, AscI 1 to 28 s for 

10 h followed by 28 to 38 s for 10 h.  SmaI digests were linearly ramped from 0.5 to 18 s over 

20 h (I) or from 1 to 18 s over 18 h (III), respectively. Mid-Range PFG marker I (I, II, III, IV), 

Lambda Ladder PFG marker (I, II, IV), and Low-range PFG marker (III-V) (New England 

Biolabs) were used as fragment size markers. 

 

 

4.5 Numerical analysis of macromolecular banding patterns (V) 

 

The PFGE gels in study V were photographed with AlphaImager™ 1220 (Alpha Innotec, San 

Leandro, CA) after visualization on a UV transilluminator. The tiff images were analyzed 

using BioNumerics software (Applied Maths, Kortrijk, Belgium) and normalized by using the 

Low-range PFG marker standards on each gel. The similarity between all pattern pairs was 

calculated with the Dice coefficent converted for convenience to a percentage value. UPGMA 

clustering was used for the construction of the dendrogram. One-band differences were 

considered sufficient to distinguish different PFGE types.  
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5 RESULTS 

 

5.1 L. monocytogenes contamination in an ice cream plant (I) 

  

The overall prevalence of L. monocytogenes in the ice cream plant environment, equipment, 

raw material, unfinished product, and ice cream samples during 1990-1997 was 2.8% (71/2 

545). The 41 strains available for typing were divided into two serotypes: 1/2b (37 strains) 

and 4b (4 strains) (Table 5). The flagellar H-antigens of one serotype 1/2 could not be 

determined because this strain was immotile. Six REDPs were generated with restriction 

enzyme ApaI, whereas AscI and SmaI generated eight and seven, respectively. When 

combining these results, 12 different PFGE types were distinguished. A single 

L. monocytogenes strain of serotype 1/2b of PFGE type II dominated, since 63% (26/41) were 

of this type. This strain was found on different equipment, especially the packaging machine, 

in the environment and in the ice cream. The 37 strains of serotype 1/2b were divided into 11 

PFGE types, showing differences of one to five bands, and seemed to represent the same 

clonal lineage. 

 

 

5.2 L. monocytogenes contamination at two broiler abattoirs and prevalence in retail raw 

broiler meat (II) 

 

The level of L. monocytogenes contamination in the environment and products at two broiler 

abattoirs (X and Y) as well as at the adjoining processing plants varied from 1 to 11%. 

Sampling sites that tested positive for L. monocytogenes include the air chiller, the skin 

removing machine (in both broiler abattoirs), the conveyor belt leading to the packaging area, 

and the packaged raw broiler itself. The raw macerated broiler mass tested positive for 

L. monocytogenes in one broiler processing plant.  

 

Of the raw broiler meat samples (legs, drumsticks, breast and wings) that originated 

from three different poultry abattoirs (X, Y and Z), 62% tested positive for L. monocytogenes 

at the retail level. The prevalence of L. monocytogenes varied depending on the poultry 

abattoir from which it originated from: poultry abattoir X 56% (5/9), Y 78% (27/36) and Z  
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 TABLE 5. Results from serotyping and PFGE typing in studies I-V. 

 

Study    Serotype Number of REDP  Number of  

PFGE types  

       ApaI AscI SmaI   /serotype 

__________________________________________________________________________________ 

 I Ice cream plant  1/2b    5    7     6  10 

     1/2*    1    1     1    1 

     4b    1    1     1    1 

 

 II Broiler processing  1/2a    9   10    ND  10 

1/2c    2    2    ND    3 

4b    1    1    ND    1 

 

III Human invasive listeriosis 1/2a  ND  49a    ND  49 

1990-2001   1/2b  ND  10    ND  10 

1/2c  ND    2    ND    2 

3a  ND    5b    ND    5 

4b  ND  18    ND  18 

 

 IV Febrile gastroenteritis 1/2a  ND    1a     1    1 

from vacuum-packed cold- 

smoked rainbow trout   

  

V Butter outbreak  3a    1    1b    ND   1 

 

 * H-antigens could not be determined due to poor growth in the BHI motility agar 

ND = not done 

 a One identical AscI REDP in studies III and IV 
b One identical AscI REDP in studies III and V 

 

 

31% (5/16). The overall prevalence for L. monocytogenes in raw broiler at the retail level 

meat was 62 %. 
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One hundred strains were further characterized with serotyping and PFGE typing. 

Restriction enzymes ApaI and AscI were used in the PFGE typing of these strains. ApaI 

yielded 12 unique patterns, and AscI, 13 patterns. When combining these patterns, we 

obtained 14 different PFGE types (Table 5). One strain from every PFGE type was serotyped, 

and three different serotypes were predicted based upon these results: 1/2a (65%), 1/2c (25%) 

and 4b (10%).  

 

Altogether six different PFGE types were found in these two broiler abattoirs. The 

same PFGE type of serotype 1/2a was found in abattoir X in the skin-removing machine, and 

two years later in raw broiler meat originating from this broiler abattoir at retail level. Three 

closely related PFGE types all of serotype 1/2a were also found in these raw broiler meat 

samples. 

 

Five different PFGE types were found in poultry abattoir Y and in macerated raw 

broiler meat mass in the adjoining poultry product plant. Three of these PFGE types (VIIa, 

VIIb, and VII), two of which were of serotype 1/2c and one of serotype 4b, could still be 

found one year later in raw broiler meat originating from this poultry abattoir. Both PFGE 

types, one of serotype 1/2c and the other of serotype 4b, found on the air chiller in poultry 

abattoir Y were also found in the raw poultry meat mass, and still one year later in raw broiler 

meat at the retail level. PFGE type VIIa of serotype 1/2c found on the skin removing machine 

was also found in packaged raw broiler meat, raw macerated poultry meat mass in the broiler 

product plant, and in raw poultry meat at the retail level even one year later.  

 

 
5.3 Variation of serotypes and genotypes of human L. monocytogenes invasive infections in 

Finland during 1990-2001 (III) 

 

Among 314 human isolates from invasive L. monocytogenes infections during 1990-2001 in 

Finland were found 5 different serotypes. Serotype 1/2a was the most common (53%), 

followed by serotypes 4b (27%), 3a (11%), 1/2b (6%), and 1/2c (3%). Strains of serotype 3a 

have been rare (except in 1997-1999) which can be attributed, at least in part, to the butter 

outbreak. The most common serotype has changed every year from 1990, when 61% (11/18) 

of the strains were of serotype 4b to 2001 when 67% (18/21) were of serotype 1/2a.  
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From the 314 clinical isolates with restriction enzyme AscI, we distinguished 81 

different PFGE types. Of these PFGE types, 28 were found on only one occasion. Each PFGE 

type was associated with one serotype, except for three PFGE types which were of either 

serotype 1/2a or 3a. The five most common PFGE types accounted for 42% of the strains. 

Only 11 of the 81 PFGE types contained five or more strains. Of these 11 PFGE types, 8 had 

closely related PFGE types among other PFGE types, and groups could be formed. The most 

common group included seven closely related PFGE types of serotype 1/2a and accounted for 

23 % (71/314) of the strains. This group has been detected in cluster analysis every year since 

1993. One specific PFGE type 1 (37/314 isolates) from this group has caused since 1994 2 to 

11 listeriosis cases per year. This PFGE type 1 was identical to the strain that caused an 

oubreak of febrile gastroenteritis (IV).  

 

5.4 Human febrile L. monocytogenes gastroenteritis outbreak caused by vacuum-packed 

cold-smoked rainbow trout (IV) and listeriosis caused by butter (V)  

 

The vacuum-packed cold-smoked rainbow trout sample from the same incriminated 

production lot was tested positive for L. monocytogenes by selective enrichment and 

quantification. The sample contained 1.9×105 cfu/g of L. monocytogenes. 

 

Stool samples taken on the day after the onset of symptoms and analyzed for 

Salmonella, Shigella, Campylobacter and Yersinia tested negative. Two additional stool 

swabs obtained from two patients were analyzed for L. monocytogenes by selective 

enrichment; both tested positive. Serotyping and PFGE typing was performed for isolates 

from the fish product and the two stool samples. These isolates were of serotype 1/2a and had 

REDPs identical to those of with restriction enzymes AscI and SmaI.  

 

An outbreak of human listeriosis was associated with a L. monocytogenes strain of 

serotype 3a in butter. This outbreak was initially detected as part of study III. At the time of 

the outbreak, the strains were serotyped for O-antigens at the Laboratory of Enteric Pathogens 

at KTL after obtaining them from the clinical laboratories. PFGE typing and complete 

serotyping for H-antigens was then performed at the Department of Food and Environmental 

Hygiene. PFGE typing showed that the REDPs were identical. These findings initiated 

epidemiological studies, which revealed the presence of an outbreak. The same strain, as 

identified by the PFGE of restriction enzymes ApaI and AscI, was identified not only in 13 
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butter samples served at a hospital where 15 outbreak-associated patients had stayed, but also 

in the dairy, that manufactured the implicated butter. This same strain was also detected in 

several lots of 7-, 10-, and 500-g packages of butter from the dairy and the wholesaler. In the 

dairy environment, the strain was isolated from the packing machines for both small and 500-

g packages, the screw conveyor of the butter wagon, and from two floor drains beneath the 

butter wagon of the small packaging line.  
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6 DISCUSSION 

 

6.1 Listeria monocytogenes contamination in an ice cream plant (I)  

 
One dominant L. monocytogenes strain of serotype 1/2b and of identical PFGE type was 

found in the environment, on the equipment, and in the ice cream of an ice cream plant. This 

strain had persisted in this plant for at least seven years and had probably adapted to the 

processing environment or the environment was suitable for survival and growth. Similar 

strains with a one- or two-band difference were encountered, suggesting that these are 

possibly clonally related. None of these similar strains persisted in the processing 

environment. One other strain of a different serotype 4b was found three times in four years. 

A Swedish study described the persistence of a strain of serotype 3b for seven years in the 

environment of a dairy plant that manufactured blue-veined cheese was (Unnerstad et al. 

1996).  

 
   

 
6.2 L. monocytogenes contamination at two broiler abattoirs and prevalence at retail 

level in raw broiler meat (II) 

 

Of the samples taken from two broiler abattoirs and from broiler product processing 

plants, 1-11% tested positive for L. monocytogenes. This is in line with the results of a Danish 

study in which 0.3-18.8% tested positive for L. monocytogenes (Ojeniyi et al. 1996).  In 

France, researchers found that 18% of samples taken at a poultry processing plant tested 

positive for L. monocytogenes (Chasseignaux et al. 2001), as did 24% of samples during 

processing at a turkey abattoir in Denmark (Ojeniyi et al. 2000). In our study, contamination 

of the broiler carcasses in the broiler abattoirs probably occurred during or after the chilling 

step in the skin-removing machine, since this was the first site in the broiler slaughtering 

process where L. monocytogenes was found; a similar finding from a turkey abattoir suggests 

the same (Clouser et al. 1995). In the Danish turkey processing study, the same PFGE types 

were found in all parts of the processing line as were found in raw and ready-to-eat, heat-

treated turkey meat. The researchers had found no L. monocytogenes onthe turkey farms from 

which the slaughtered birds originated and concluded that the turkey meat became 

contaminated during processing, even though they could not pinpoint the exact location 
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(Ojeniyi et al. 2000). According to a Danish study in which 2% (1/48) of fecal droppings 

tested positive (Petersen and Madsen 2000), housed broilers may carry L. monocytogenes in 

their feces. In a survey in Spain, 27% of free-range poultry farms tested positive for 

L. monocytogenes when analyses of poultry droppings showed that even free-range poultry 

could play a role in bringing L. monocytogenes into poultry abattoirs (Esteban et al. 2008).  

Still, special attention should be focus on cleaning in broiler abattoirs to pinpoint 

contamination steps such as air chillers, skin removing machines, and conveyor belts. 

 

PFGE typing found that the same PFGE type present in the skin-removing machine 

was present in packaged raw broiler meat at the retail level two years later. This finding 

suggests that this strain may have survived at the broiler abattoir for at least two years, during 

which time it continued to contaminate broiler meat. Another PFGE type was recovered from 

the air-chiller at the other broiler abattoir and, one year later was the most common PFGE 

type in raw broiler meat at the retail level from this broiler abattoir. One study that used 

PFGE with restriction enzyme AscI to compare L. monocytogenes isolates from Estonian, 

Danish, Hungarian, Finnish, and Swedish poultry meat found identical PFGE types (Praakle-

Amin et al. 2006). This could mean that some strains may have special characteristics 

enabling them to survive in poultry processing plants. 

 

The prevalence of L. monocytogenes in raw broiler meat at the retail level was 

surprisingly high (62%). This may be due to cross-contamination at the retail level, since the 

majority were bought unpackaged on display. Because raw broiler meat may be contaminated 

with L. monocytogenes, it is important to realize that when using it as a raw material in  

broiler product processing plants, raw broiler meat may be a source of post-processing 

contamination. Special care is needed at the home and retail levels to avoid the cross-

contamination of L. monocytogenes from raw broiler meat to other foodstuffs, especially 

ready-to-eat foods.  

 

The most common predicted serotype was 1/2c (65%), followed by 1/2a (25%) and 4b 

(10%), and all serotypes were found in broiler meat at the retail level in 1997. A Finnish study 

of marinated broiler legs from retail stores in 2002-2003 found these same serotypes 

(Aarnisalo et al. 2008). Unfortunately, the study did not report the exact serotype distribution. 

This pattern differs from findings in poultry in the USA, where 1/2b (64%) was the most 

common serotype, followed by 1/2c (18%), 3b (6%) and incomplete (12%) (Bailey et al. 
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1989). In Denmark, the serotype distribution in poultry was 98% for serotype 1 and only 2% 

for serotype 4 (Ojeniyi et al. 1996). In Estonia, 91% (65/71) of broiler strains were of 

serotype 1/2a, 7% (5/71) of serotype 1/2b, and only 1% (1/71) of serotype 4b (Praakle-Amin 

et al. 2006). In a Spanish survey, the serotype distribution in raw poultry meat at retail was 

37% for 1/2b (21/57), 26% for 1/2a (15/57), 16% for 1/2c (9/57) and 21% for 4b or 4bx 

(12/57) (Vitas et al. 2004). At one Spanish abattoir, only serotypes 1/2b (89%)  and 1/2a 

(11%) were found (Lopez et al. 2008a). 

 

 

6.3 Variation of serotypes and genotypes of human L. monocytogenes invasive infections 

in Finland during 1990-2001 (III) 

 

The most common serotype from 1990-2001 in human invasive L. monocytogenes infections 

in Finland was 1/2a, which accounted for 53% of the isolates studied. The second most 

common serotype was 4b, which accounted for 27%. The percentage of serotype 1/2a 

increased from 22% in 1990 to 67% in 2001, and that of serotype 4b decreased from 61% in 

1991 to 26% in 2001. This change in serotype distribution is similar to that in Switzerland 

where the most common serogroup (60%) since 1994 has been 1/2 rather than serogroup 4 

(40%) (Pak et al. 2002).  Similar results reported from Sweden, the UK, Denmark, Iceland 

and Canada suggest that in many countries serotype 1/2a is replacing 4b in human infections 

(McLauchlin and Newton 1995, Gerner-Smidt et al. 1995, Loncarevic et al. 1997, Hjaltested 

et al. 2002, Parihar et al. 2008b, Clark et al. 2009). In 1994-2003 in Denmark, 59% belonged 

to serogroup 1/2 and 40% to serogroup 4 (Gerner-Smidt, 2005). One explanation for this 

serotype shift could be that serotype 1/2a and 1/2b infections are more common in blood 

stream infections than in meningoencephalitis, and the likelihood of detecting a blood stream 

infection has increased, because blood culturing systems have become more sensitive, and the 

indications for drawing a blood culture have become broader (Swaminathan and Gerner-

Smidt 2007).  However, in 1976-1995 in the Netherlands, 65% of human listeriosis cases 

were of serotype 4b (Aouaj et al. 2002), and in 1997-2000 in Austria, 61% of 41 human 

listeriosis infections were caused by serotype 4b, and 29% by serotype 1/2a (Wagner and 

Allerberger 2003). Moreover, in 2001 in Belgium, 54% of 48 strains were of serotype 4b, and 

37,5 % of serotype 1/2a (Yde and Genicot 2004). 
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From  November 1996 to June 2000 in the New York, USA, 74 PFGE types with 

restriction enzyme AscI were detected in 131 human listeriosis isolates (Sauders et al. 2003). 

Of these, each of 50 PFGE types was found only once. The authors concluded, that while 

most human listeriosis cases were considered sporadic, PFGE typing indicated that 13 to 31% 

of cases may have represented single-source clusters. In 2000 and 2001, 42 cases of human 

listeriosis were recorded in Maryland and California in the USA (Gilbreth et al. 2005). Of 

these 42 strains, 35 different PFGE types were found with restriction enzyme AscI. From 

these PFGE types 13 were identical to just a few of the PFGE types found in ready-to-eat 

foods in the same time period and area.  In our study, 65% (53/81) of the different PFGE 

types distinguished from the 314 clinical isolates with restriction enzyme AscI were 

encountered more than once.  

 

The most common PFGE type (37/314 isolates, 12%) of serotype 1/2a was identical to 

the strain that caused an outbreak of febrile gastroenteritis in study II. This strain was 

recovered during 1994-2001 from 2 to 11 human invasive L. monocytogenes infection cases 

annually. A similar phenomenon occured in New Zealand, where 30% of human invasive 

L. monocytogenes cases were caused by the same PFGE type that caused a series of incidents 

of non-invasive gastroenteritis from ready-to-eat meats (Sim et al. 2002). 

 

 

6.4 Human outbreaks of febrile L. monocytogenes gastroenteritis caused by vacuum-

packed cold-smoked rainbow trout (IV) and listeriosis from butter (V) 

 

Isolates of serotype 1/2a and those sharing identical PFGE types were recovered from 

two patient stool samples as well as from a vacuum-packed cold-smoked rainbow trout from 

the same production lot as the incriminated fish product. If the same L. monocytogenes 

enrichment method which was used for the fish product had not been used for the stool 

samples, the diagnosis would have been missed. This outbreak investigation added further 

evidence for previous findings that L. monocytogenes may cause non-invasive febrile 

gastroenteritis in previously healthy persons (Table 4). 

 

An outbreak among 25 patients was traced to butter containing L. monocytogenes of 

serotype 3a. This was the first time this serotype had caused an outbreak, and the vehicle of 

infection was also unusual. The use of the two restriction enzymes with PFGE failed to 
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distinguish the outbreak strain. The rare serotype and the clustering of cases in a patient 

population spending long periods together at a hospital with an ongoing PFGE typing project 

of human listeriosis cases facilitated the recognition of the outbreak. This was the first time a 

listeriosis epidemic was identified and confirmed using genotyping methods. 

 

 

6.5 Evaluation of the use of serotyping and PFGE typing for L. monocytogenes in food 

processing and human infections 

 

Serotyping is a basic phenotypical typing method with limited discrimination power, 

but it enables rough comparison between strains in different laboratories without the need to 

exchange strains or electronic data. Serotyping requires the use of expensive antisera, is fairly 

cumbersome, and the interpretation of agglutination reactions can occasionally be a challenge. 

Still, in combination with a genotyping method such as PFGE, serotyping yields valuable 

information, since strains of identical REDPs are sometimes of different serotype (Chou and 

Wang 2006). 

 

Overall, the restriction enzyme AscI created REDPs, which were the easiest to 

compare visually. If only one instead of three restriction enzymes had been used different in 

study I, only six to eight different PFGE types would have been encountered instead of 

twelve. The combination of any of these two restriction enzymes would have created between 

nine and twelve PFGE types. If only one of these two restriction enzymes had been used in 

study II in PFGE typing, twelve or thirteen PFGE types would have resulted instead of 

fourteen. Combining these results with the serotyping results achieved good discrimination 

between these isolates.  

 

PFGE in combination with serotyping proved to be very useful tools in the two 

foodborne outbreak investigations (IV-V). For regular human listeriosis PFGE typing 

surveillance, the use of one restriction enzyme is sufficient, but in the case of contamination 

studies or outbreaks, the use of at least two restriction enzymes is recommended in order to 

increase the discrimination power of the method (Barret et al 2006). Another approach would 

be to use, in addition to PFGE, serotyping and/or another genotyping method, such as 

ribotyping, RAPD or AFLP, in order to raise more confidence in the typing results. Corcoran 
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et al. (2006) also supported this approach of combining typing methods in typing 

L. monocytogenes. 
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7 CONCLUSIONS 

 

1. PFGE typing and serotyping proved to be very useful methods in two food processing 

contamination studies, thus enabling the identification of potentially important contamination 

sites and possible prolonged contamination. The overall prevalence of L. monocytogenes 

isolated from all samples taken from the production environment, processing equipment or ice 

cream of an ice-cream plant during 1990-1997 was 2.8%. Two serotypes were detected (1/2b 

and 4b) and twelve different PFGE types were created using three restriction enzymes (ApaI, 

AscI and SmaI). One PFGE type of serotype 1/2b was the most common PFGE type 63% 

(26/41) as well as the only PFGE type found in the production environment, processing 

equipment - especially on the packaging equipment – and in the ice cream. This persistent 

strain had survived in this ice cream plant for at least seven years. 

 

The overall prevalence of L. monocytogenes at two broiler abattoirs and processing plants 

varied from 1 to 11%. The prevalence of L. monocytogenes in raw broilers at the retail level 

was 62%. Three serotypes were detected (1/2a, 1/2c and 4b) and fourteen PFGE types were 

created with two restriction enzymes (ApaI and AscI). The sampling sites that tested positive 

for L. monocytogenes at the broiler abattoirs were the air chiller, the skin removing machine 

and the conveyor belt leading meat to the packaging area. The skin removing machine was a 

sampling site that tested positive at both broiler abattoirs studied, indicating an important 

contamination point of L. monocytogenes.  Four different PFGE types of serotypes 1/2a, 1/2c, 

and 4b that may have persisted for at least one or two years in the broiler abattoirs were 

identified.  

 

 

2. PFGE typing in combination with serotyping proved very useful in characterizing 

L. monocytogenes strains yhat cause human invasive infections in Finland. Human 

L. monocytogenes infections from 1990-2001 in Finland were caused by the following five 

serotypes: 1/2a (165 isolates, 53%), 4b (85 isolates, 27%), 3a (36 isolates, 11%), 1/2b (18 

isolates, 6%), and 1/2c (10 isolates, 3%). These serotypes were further divided with PFGE 

employing restriction enzyme AscI into 82 PFGE types. The most common PFGE type 

(37/314 isolates, 12%) of serotype 1/2a was identical to the strain that caused an oubreak of 

febrile gastroenteritis from vacuum-packed cold-smoked rainbow trout in study II. This strain 

was recovered during 1994-2001 from two to eleven human invasive L. monocytogenes 
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infection cases annually. The second most common PFGE type (32/314 isolates, 11%) of 

serotype 3a was identical to the strain that caused an outbreak of human listeriosis from 

butter. The percentage of serotype 1/2a increased from 22% in 1990 to 67% in 2001, and 

serotype 4b decreased from 61% in 1991 to 26% in 2001. 

 

 

3. PFGE typing in combination with serotyping proved successful in human foodboorne 

outbreak investigations because the food vehicle could be identified. In fact, the human 

listeriosis outbreak from butter was initially identified using these methods. L. monocytogenes 

of serotype 1/2a in vacuum-packed cold-smoked rainbow trout was found to be the likely 

causative agent in an outbreak of human febrile gastroenteritis. Indistinguishable REDPs were 

created with restriction enzymes AscI and SmaI for L. monocytogenes isolates from patients 

and fish from the same production lot that the patients had eaten. 

 

L. monocytogenes of serotype 3a in butter was the causative agent in a listeriosis outbreak, 

which was identified due to the PFGE typing of human listeriosis strains. Identical REDPs 

were created with AscI and ApaI for L. monocytogenes isolates from patients and butter of the 

same brand that the patients had eaten, as well as from the butter production environment, the 

packing machines, the screw conveyor of the butter wagon, and from the floor drains.  

 

 

4. For regular typing surveillance of L. monocytogenes with PFGE, the use of one restriction 

enzyme is sufficient, but in the case of outbreaks, the use of at least two restriction enzymes is 

recommended in order to increase the discrimination power of the method. Another approach 

would be to use serotyping and/or another genotyping method, such as ribotyping or AFLP, to 

yield greater discrimination typing power.  
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