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ABSTRACT 

Yersinia pseudotuberculosis infections derive from ingestion of contaminated food or 
water. Typical symptoms of yersiniosis are fever and abdominal pain resulting from 
mesenteric lymphadenitis, and immunological sequelae are possible. The pathogen has 
recently caused several epidemics in Finland through fresh produce. However, the slow 
growth rate and poor competition of Y. pseudotuberculosis make its detection and 
isolation demanding. Polymerase chain reaction with primers targeted to virulence genes 
inv, virF, and yadA is thus often used in detection, although the sequence variability of the 
virulence genes is unknown. To study genetic variability of the virulence genes, inv, virF, 
and yadA of 18 Y. pseudotuberculosis strains, and two Yersinia similis strains originating 
from 12 different countries were sequenced. The greatest sequence variability was 
detected in yadA, while the variability of inv and virF was limited. The observed 
variability in yadA may hinder detection using PCR and also impact functional properties 
of YadA. Furthermore, the commonly used primers targeted to inv can, in addition to Y. 
pseudotuberculosis, detect Y. similis. 

Y. pseudotuberculosis tolerates well low temperature and other stressful conditions in 
the environment and in the food chain. However, information on the stress tolerance 
mechanisms used by this pathogen is limited. Here, the roles of two-component systems 
(TCSs), alternative sigma factor E, and RNA helicase CsdA of Y. pseudotuberculosis 
IP32953 under stress conditions were studied. The relative expression levels of 54 genes 
encoding putative TCSs in Y. pseudotuberculosis IP32953 were determined at 3°C and at 
the optimum growth temperature of 28°C. The relative expression levels of most of the 
genes were higher at 3°C than at 28°C, and TCS CheA/CheY encoding genes cheA and 
cheY had the highest relative expression levels at 3°C. Mutational analysis demonstrated 
the demand for cheA for optimal growth at 3°C. In addition, both cheA and cheY were 
required for motility. Increased expression of several TCS encoding genes demonstrate 
that probably in Y. pseudotuberculosis many TCSs play a role in adaptation to low 
temperatures.  In addition, motility seems to be associated with cold tolerance. 

The role of alternative sigma factor E under stress conditions was studied by 
determining relative expression levels of rpoE encoding E and using mutational analysis. 
Expression of rpoE was induced under low and high temperatures, acid and alkaline 
conditions, and osmotic and ethanol stress. Mutation of rpoE impaired or abolished 
growth at pH 5.0, at 3°C, at 37°C, at 42°C, and at 3% ethanol, demonstrating that 
functional E is essential under several stress conditions in Y. pseudotuberculosis IP32953. 
In addition, the rpoE mutant had a higher minimum and a lower maximum growth 
temperature than the wild-type strain. Thus, in this pathogen, E has a significant role in 
stress tolerance, and it contributes to survival during food processing and storage. 

The function of a cold-induced RNA helicase CsdA has been unknown in Y. 
pseudotuberculosis. Investigation of the role of CsdA at 3°C by mutagenesis revealed that 
CsdA is essential for growth at low temperatures. At the optimum growth temperature of 
28°C, no growth defect was seen. Also the minimum growth temperature of one of the 
mutants was significantly higher than that of the wild-type strain. Thus, CsdA enables the 
growth of Y. pseudotuberculosis in the food chain by allowing continuous growth at low 



 
 
 
 

temperatures. The results demonstrate that the foodborne pathogen Y. pseudotuberculosis 
counters environmental stress by using TCSs and alternative sigma factor, and by 
synthesizing cold-induced proteins. 
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1 INTRODUCTION 

Yersinia pseudotuberculosis was first isolated in 1883 from guinea pigs that had been 
inoculated with contents of subcutaneous tubercles of a human patient (Malassez & 
Vignal, 1884, Mollaret, 1995). Initially, the pathogen was isolated only from rodents and 
birds (Mollaret, 1995). Human systemic infection and mesenteric adenitis caused by Y.
pseudotuberculosis were reported in 1909 and 1910, respectively (Albrecht, 1910, 
Saisawa, 1913). In 1953, a form of mesenteric lymphadenitis affecting mainly children 
and youths was described (Masshoff & Dölle, 1953), and in 1954, Y. pseudotuberculosis 
isolated from mesenteric lymph nodes was shown to be the cause of the disease (Knapp & 
Masshoff, 1954, Knapp, 1954). Mesenteric adenitis caused by Y. pseudotuberculosis was 
subsequently reported in several European countries, and Y. pseudotuberculosis 
septicemia as well as immunological sequelae, including erythema nodosum, 
scarlatiniform rash, and reactive arthritis, were also reported (Mollaret, 1995). 

The first Y. pseudotuberculosis epidemic was described in 1984 in Finland (Tertti et
al., 1984). The source of Y. pseudotuberculosis was not found, but several patients had 
been growing, selling, or eating vegetables (Tertti et al., 1984). In 1998, in a large 
Canadian Y. pseudotuberculosis outbreak milk was suspected to be the source of infection 
(Nowgesic et al., 1999). However, not until 2004 was Y. pseudotuberculosis confirmed to 
be a foodborne pathogen in a Finnish outbreak investigation (Nuorti et al., 2004, Tauxe, 
2004). Since then, several epidemics through contaminated fresh produce (Jalava et al., 
2004, Jalava et al., 2006, Kangas et al., 2008, Rimhanen-Finne et al., 2009) and an 
epidemic through unpasteurized milk (http://www.promedmail.org/) have been reported in 
Finland. 

Food, environment, and patient samples contain abundant background flora, making 
detection of Y. pseudotuberculosis slow and uncertain. Polymerase chain reaction (PCR) 
with primers targeted to virulence genes of Y. pseudotuberculosis is thus often used for 
detection and identification of this pathogen (Fredriksson-Ahomaa & Korkeala, 2003, 
Fredriksson-Ahomaa et al., 2010, Skurnik et al., 2009). However, the variability of the 
virulence genes in different Y. pseudotuberculosis strains and serotypes remains unknown. 

Refrigeration is the most common preservation method used in the modern food chain. 
Y. pseudotuberculosis tolerates well low temperatures as well as other stressful conditions 
in the environment and food chain (Fredriksson-Ahomaa et al., 2010, Fukushima et al., 
1989, Jalava et al., 2006, Palonen et al., 2010, Rimhanen-Finne et al., 2009). However, 
studies of Y. pseudotuberculosis and stress factors encountered in the food chain are 
scarce, and thus, the mechanisms allowing stress tolerance of Y. pseudotuberculosis are 
largely unknown. 

The first aim of this study was to map the genetic variability of virulence genes used 
for detection and identification of Y. pseudotuberculosis.  To detect Y. pseudotuberculosis 
correctly by PCR, the sequence variability of the chosen genes should be low. The second 
aim was to investigate the role of two-component systems, sigma factor E, and RNA 
helicase CsdA in stress tolerance of Y. pseudotuberculosis. An understanding of how 
bacteria tolerate stress is necessary to be able to control pathogens in the food chain. 
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2 REVIEW OF THE LITERATURE 

2.1 Genus Yersinia 

The gram-negative bacterium Yersinia pseudotuberculosis belongs to the genus Yersinia 
of the family Enterobacteriaceae (Bottone et al., 2005). Other species of the genus are Y.
aldovae, Y. aleksiciae, Y. bercovieri, Y. enterocolitica, Y. entomophaga, Y. frederiksenii, 
Y. intermedia, Y. kristensenii, Y. massiliensis, Y. mollaretii, Y. nurmii, Y. pekkanenii, Y. 
pestis, Y. rohdei, Y. ruckeri, Y. similis, and Y. wautersii  (Bottone et al., 2005, Hurst et al., 
2011, Merhej et al., 2008, Murros-Kontiainen et al., 2011a, Murros-Kontiainen et al., 
2011b, Savin et al., 2014, Sprague et al., 2008, Sprague & Neubauer, 2005). Y.
entomophaga and Y. nurmii are phylogenically very close to each other (Johanna 
Björkroth, personal communication). Yersinia are facultatively anaerobic, oxidase-
negative, and catalase-positive, and they do not form spores (Bottone et al., 2005). The 
optimum growth temperature of Yersinia is 28 29°C and their growth range is 4 42°C 
(Bottone et al., 2005), but Y. enterocolitica and Y. pseudotuberculosis can grow at 
temperatures near 0°C (Bergann et al., 1995, Bottone et al., 2005, Fredriksson-Ahomaa et
al., 2010, Walker et al., 1990). Three species are pathogenic to humans: Y.
pseudotuberculosis, Y. enterocolitica, and Y. pestis (Bottone et al., 2005). Y.
pseudotuberculosis and Y. enterocolitica are enteropathogenic, while Y. pestis is the 
causative agent of plague (Carniel et al., 2006). Y. pseudotuberculosis and Y. pestis are 
genetically highly similar and Y. pestis probably emerged from Y. pseudotuberculosis 
some 1500-20 000 years ago (Achtman et al., 1999). 

Y. pseudotuberculosis can be divided into 21 serotypes (Carniel et al., 2006). 
Serotypes O:1a and O:1b are the most common ones isolated from patients in Europe, 
Australasia, and North America, and serotypes O:4b and O:5b from patients in East Asia 
(Carniel et al., 2006). In South Korea, strains belonging to serotype O:15 are often found 
in human patients (De Castro et al., 2009, Fukushima et al., 2001, Laukkanen Ninios et
al., 2011). 

The first Y. pseudotuberculosis strain was sequenced in 2004 (Chain et al., 2004). The 
genome of the sequenced strain IP32953 consists of a chromosome and two plasmids. The 
chromosome of the strain IP32953 is 4.7 Mbp long and contains 3974 coding sequences 
(Chain et al., 2004). 

2.2 Yersinia pseudotuberculosis infections 

In 2010, Yersinia was the third most commonly reported zoonosis in the European Union 
(European Food Safety Authority, 2012). Most Yersinia cases were caused by Y.
enterocolitica (European Food Safety Authority, 2012). However, in Finland Y. 
pseudotuberculosis has caused on average 16% (variation 5 32%) of confirmed Yersinia 
cases in the last decade (Jaakola et al., 2012), and the incidence of Y. pseudotuberculosis 
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infections between 1995 and 2006 varied between 0.6 and 4.8 (average 1.9/100 000 
population) (Fredriksson-Ahomaa et al., 2010). Y. enterocolitica infections are usually 
sporadic, while Y. pseudotuberculosis has caused several outbreaks, especially in Finland 
and in Japan (Jalava et al., 2004, Jalava et al., 2006, Kangas et al., 2008, Nuorti et al., 
2004, Rimhanen-Finne et al., 2009, Tsubokura et al., 1989). 

2.2.1 Sources of Yersinia pseudotuberculosis 

Y. pseudotuberculosis outbreaks have resulted from consumption of vegetables (Jalava et
al., 2004, Jalava et al., 2006, Kangas et al., 2008, Nuorti et al., 2004, Rimhanen-Finne et
al., 2009) or other foodstuff (Tsubokura et al., 1989), water (Tsubokura et al., 1989), or 
unpasteurized milk (http://www.promedmail.org/) contaminated with the bacterium. 
Sporadic infections have arisen from ingestion of Y. pseudotuberculosis via water 
(Fukushima et al., 1988, Fukushima et al., 1989).  Y. pseudotuberculosis has been isolated 
from wild animals such as rats (Fukushima et al., 1988, Kageyama et al., 2002, Zheng et
al., 1995), mice (Buhles et al., 1981, Fukushima et al., 1990), shrew (Kangas et al., 2008), 
raccoon dogs (Fukushima & Gomyoda, 1991), deer (Fukushima & Gomyoda, 1991, Jerrett 
et al., 1990), hares (Fukushima & Gomyoda, 1991), marten (Fukushima & Gomyoda, 
1991), birds (Cork et al., 1995, Fukushima & Gomyoda, 1991), and wild boars 
(Fredriksson-Ahomaa et al., 2009).  

Domestic animals may also harbour Y. pseudotuberculosis. Swine are potential 
reservoirs for Y. pseudotuberculosis infections (Laukkanen et al., 2008, Laukkanen et al., 
2003, Niskanen et al., 2008, Niskanen et al., 2002, Okwori et al., 2009, Ortiz Martínez et
al., 2010). In addition, the bacterium has been isolated from sheep (Okwori et al., 2009, 
Slee & Skilbeck, 1992), goats (Lãtnada et al., 2005), cattle (Slee et al., 1988), rabbits 
(Zheng et al., 1995), cats (Fukushima et al., 1985, Fukushima et al., 1989), and dogs 
(Fukushima et al., 1985). Most human and animal yersiniosis cases are detected during 
winter, spring, or early summer (Carniel et al., 2006, Fukushima et al., 1985, Fukushima 
et al., 1990, Jerrett et al., 1990, Slee & Skilbeck, 1992, Slee et al., 1988). Consumption of 
vegetables from the previous crop year has led to epidemics in the spring in Finland 
(Jalava et al., 2006, Kangas et al., 2008). 

2.2.2 Symptoms 

Infection with Y. pseudotuberculosis causes acute abdominal pain, mesenteric 
lymphadenitis, fever, and diarrhoea (Carniel et al., 2006, Wren, 2003). Immunological 
sequelae, such as reactive arthritis and erythema nodosum, may follow infection 
(Fredriksson-Ahomaa et al., 2010, Jalava et al., 2006). In immunocompromised persons or 
persons with underlying diseases, systemic infections are possible (Carniel et al., 2006). 
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2.3 Pathogenesis and virulence factors 

Infection with Y. pseudotuberculosis follows ingestion of contaminated food or water 
(Fukushima et al., 1988, Fukushima et al., 1989, Jalava et al., 2004, Jalava et al., 2006, 
Kangas et al., 2008, Nuorti et al., 2004, Rimhanen-Finne et al., 2009, Tsubokura et al., 
1989). In the terminal ileum, bacteria are internalized by microfold (M) cells. From the M 
cells, Y. pseudotuberculosis terminates in lymphoid follicles under the intestinal 
epithelium (Leo & Skurnik, 2011). Yersinia can spread from the lymphoid follicles via 
lymphatics and blood vessels to the mesenteric lymph nodes, spleen, liver, lungs, and 
peripheral lymph nodes (Carniel et al., 2006). Previously healthy persons usually have 
localized Yersinia infections in the gut wall or regional lymph nodes, while 
immunocompromised persons or persons with underlying diseases can have systemic 
infections (Carniel et al., 2006). 

The 70-kb virulence plasmid pYV (plasmid for Yersinia virulence) is essential for 
virulence and is present in all Y. pseudotuberculosis strains that are pathogenic (Carniel et 
al., 2006, Gemski et al., 1980). Other important virulence factors are the adhesins invasin 
(Inv) and attachment invasion locus (Ail). In addition, a high-pathogenicity island (HPI) 
and/or superantigenic toxins (Y. pseudotuberculosis-derived mitogen, YPM) can be found 
in some Y. pseudotuberculosis strains (Carniel et al., 2006). Y. pseudotuberculosis can be 
divided into genetic groups based on the presence of HPI and YPM (Table 1) (Fukushima 
et al., 2001). 

 
Table 1. Genetic groups of Yersinia pseudotuberculosis (Fukushima et al., 2001). 
Genetic group Pathogenicity HPI1 YPM2 subtype Serotype 
1 + + YPMa O:1b, 3, 5a, 5b, 

153  
2 + + - O:1a, 1b, 3, 5b, 

13, 14 
3 + - YPMa O:1b, 1c, 2a, 

2b, 2c, 3, 4a, 
4b, 5a, 5b, 6, 7, 
10, 153  

4 - - YPMb O:1b, 5a, 5b, 6, 
7, 9, 10, 11, 12 

5 Low Truncated YPMc O:3 
6 + - - O:1b, 2a, 2b, 

2c, 3, 4a, 4b, 
5a, 5b, 6, 7, 10, 
11, 13, 153  

1HPI, high-pathogenicity island 
2YPM, superantigenic toxin 
3Serotype 15 included in the group in Carniel et al. (2006) 
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2.3.1 High-pathogenicity island 

To disseminate in the host, a bacterium must have the ability to acquire ferric ions in the 
iron-restricted environment of the host (Carniel, 2001). High-pathogenicity Yersinia 
strains have a well-conserved HPI that encodes a siderophore yersiniabactin used for ferric 
ion uptake (Carniel, 2001, Carniel et al., 1987, Carniel et al., 1989, de Almeida et al., 
1993). Generally, HPI-carrying Yersinia strains are capable of systemic dissemination in 
the host, while Yersinia strains not carrying HPI are less pathogenic and cause localized 
infections (Carniel, 1999). Low-pathogenicity Yersinia strains usually cause systemic 
infections only in iron-overloaded patients (Carniel et al., 2006). In addition to Yersinia, 
HPI is also present in other Enterobacteriaceae species (Carniel, 2001). 

Several highly virulent Y. pseudotuberculosis O:1 and O:3 strains do not encode 
yersiniabactin, which has led to the suggestion of the existence of alternative siderophores 
(Rakin et al., 2012). Two gene clusters, existing in all of the sequenced Y. 
pseudotuberculosis and Y. pestis strains, encode pseudochelin and yersiniachelin, which 
may function as siderophores (Rakin et al., 2012). 

2.3.2 Invasin  

Expression of the chromosomally encoded virulence factor adhesin Inv (Isberg et al., 
1987) is thermoregulated. Expression of Inv is highest at moderate temperatures (25-
28°C) during the late stationary phase (Isberg et al., 1988, Nagel et al., 2001). At 25°C 
during the exponential growth phase or at 37°C during the stationary growth phase, 
expression of Inv is low, and at 37°C during the exponential growth phase expression of it 
is virtually undetectable (Nagel et al., 2001). Transcriptional regulator designated RovA 
(regulator of virulence) (Nagel et al., 2001, Revell & Miller, 2000) induces transcription 
of inv at moderate temperatures (Nagel et al., 2001). Both RovA and Inv are required for 
efficient invasion of Y. pseudotuberculosis to mammalian cells (Marra & Isberg, 1997, 
Nagel et al., 2001). At 37°C RovA is degraded proteolytically (Quade et al., 2012). Low 
expression of Inv and degradation of RovA at mammalian body temperature contradict the 
role of Inv as a virulence factor. However, other environmental signals can induce Inv 
expression in the host (Nagel et al., 2001). At 37°C optimal inv expression requires acidic 
conditions in Y. enterocolitica (Pepe et al., 1994), but in Y. pseudotuberculosis, acidic pH 
does not induce inv or rovA expression at 37°C (Nagel et al., 2001). In Y. 
pseudotuberculosis, nutrient-rich environment and physiological osmolarity induce rovA 
and inv expression (Nagel et al., 2001), while in Y. enterocolitica, nutrient content of 
growth medium does not affect inv expression and physiological osmolarity decreases inv 
expression (Pepe et al., 1994). 

Adhesin Inv has an important role at the beginning of Yersinia infection. In the 
terminal ileum, Inv binds to the 1 integrins on the apical surfaces of the M cells, leading 
to internalization of bacteria by the M cells (Leo & Skurnik, 2011). Invasin causes an 
inflammatory response in epithelial cells, which may help Yersinia to disseminate in the 
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host (Grassl et al., 2003). Primers targeted to inv are commonly used to detect Y.
pseudotuberculosis (Fredriksson-Ahomaa et al., 2010, Skurnik et al., 2009). 

2.3.3 Attachment invasion locus 

Chromosomally encoded adhesin Ail is expressed at 37°C (Leo & Skurnik, 2011). Ail of 
Y. enterocolitica adheres to epithelial cells and plays a role in invasion of some cell types 
such as human laryngeal epithelium in tissue culture (Leo & Skurnik, 2011, Miller & 
Falkow, 1988). In an earlier report, Ail of Y. pseudotuberculosis did not mediate cellular 
adhesion or uptake to eukaryotic cells when investigated with an Escherichia coli 
expression system (Yang et al., 1996). Later, this defect was found to be due to 
substitution of threonine at position 7 with isoleucine in the Ail of the Y.
pseudotuberculosis strain used (Tsang et al., 2013). When the substitution is not present, 
Ail of Y. pseudotuberculosis mediates both cellular adhesion and uptake in the E. coli 
expression system. However, Ail expressed in Y. pseudotuberculosis is unable to mediate 
cell adhesion or invasion in vitro probably due to the long lipopolysaccharide (LPS) of Y. 
pseudotuberculosis (Tsang et al., 2013). It has been suggested that in Y. enterocolitica 
significance of Ail in serum resistance is small because O-antigenic chains of the LPS 
often mask this small outer membrane protein (Biedzka-Sarek et al., 2005, Wachtel & 
Miller, 1995). However, in Y. pseudotuberculosis Ail mediates serum resistance even in 
the presence of the full-length LPS (Ho et al., 2012a, Ho et al., 2012b, Paczosa et al., 
2014, Yang et al., 1996). In addition, Ail has a role in the colonization and growth of Y. 
pseudotuberculosis in the lungs (Paczosa et al., 2014). 

2.3.4 Yersinia pseudotuberculosis-derived mitogen 

Part of the Y. pseudotuberculosis strains produce superantigen YPM in the host (Abe et
al., 1993, Miyoshi-Akiyama et al., 1993, Uchiyama et al., 1993) (Table 1). Superantigens 
induce host cells to secrete large amounts of cytokines that can launch or worsen 
autoimmune diseases (Carniel et al., 2006). There are three variants of YPM: YPMa, 
YPMb, and YPMc. At the amino acid level, YPMb differs from YPMa by 17%, and 
YPMc has one amino acid substitution compared with YPMa (Carniel et al., 2006). Genes 
encoding YPMa and YPMc have probably evolved from ypmB, which is supposed to be 
an ancestral ypm gene (Carnoy et al., 2002). Production of the YPM increases the 
virulence of Yersinia (Carnoy et al., 2000), and based on the presence of ypmB in non-
pathogenic Y. pseudotuberculosis strains (Table 1), genetic drift from ypmB to ypmA and 
ypmC has been suggested (Carnoy et al., 2002).  
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2.3.5 Plasmid for Yersinia virulence 

Genes encoding for Yersinia outer membrane proteins (Yops) and Yersinia adhesin 
(YadA) are located in the pYV (Cornelis & Wolf Watz, 1997). Yops are secreted proteins 
and essential for virulence. Some of them, such as YopE, YopH, YpkA, and YopM, 
function as intracellular effectors in eukaryotic cells and others, such as YopD and YopB, 
are involved in the translocation of other Yops in the eukaryotic cells (Cornelis & 
Wolf Watz, 1997). When Yersinia adhere to eukaryotic cells, Yops are secreted into 
eukaryotic cells by a pYV-encoded type III secretion apparatus Ysc, which forms a hollow 
channel for Yops from the bacterial cytoplasm to the eukaryotic cytoplasm (Bergman et 
al., 1994, Cornelis, 2006, Michiels et al., 1991, Rosqvist et al., 1994, Rosqvist et al., 
1995). Specific Yop chaperones (Sycs) assist in the secretion of Yops (Cornelis & 
Wolf Watz, 1997, Cornelis, 2006). Adhesins Inv, Ail, and YadA enhance Yop 
translocation into host cells (Maldonado-Arocho et al., 2013, Mejía et al., 2008) and play 
a role in serum resistance in Y. pseudotuberculosis (Maldonado-Arocho et al., 2013). 
When bacteria are in close contact with eukaryotic cells, yop genes are transcribed 
(Pettersson et al., 1996). Also a pYV-encoded transcriptional activator of the Yersinia 
virulence regulon (VirF) positively controls the transcription of yop, ysc, and yadA 
(Cornelis et al., 1989, Heroven et al., 2012a, Michiels et al., 1991). In Y. 
pseudotuberculosis, transcription of virF is repressed by a small nucleoid-structuring 
protein YmoA (Yersinia modulator A) (Böhme et al., 2012, Cornelis et al., 1991, Heroven 
et al., 2012a). At 37°C proteases degrade YmoA and transcription of virF is induced 
(Heroven et al., 2012a). In addition, at 25°C virF mRNA of Y. pseudotuberculosis 
contains a hairpin structure that blocks the ribosomal binding site (Böhme et al., 2012). At 
37°C the hairpin structure melts and virF mRNA is translated, resulting in induction of 
pYV-encoded virulence factors. Compared with the wild-type strain, stabilization of the 
hairpin structure results in attenuated virulence, while destabilization leads to either 
similar or attenuated virulence. Thus, an exact amount of VirF is needed for ideal 
pathogenicity of Y. pseudotuberculosis (Böhme et al., 2012). 

After getting through the intestinal epithelium, YadA (Yang & Isberg, 1993) is the 
principal adhesin that is used by Yersinia (Leo & Skurnik, 2011).  Expression of pYV-
encoded yadA is highest at 37°C in the exponential growth phase in a minimal medium 
(Eitel & Dersch, 2002). The structure of YadA resembles a lollipop projecting from the 
bacterial cell surface (Hoiczyk et al., 2000). It binds collagen, fibronectin and laminin, 
intestinal mucus, and many cell types such as epithelial cells, macrophages (Leo & 
Skurnik, 2011), and neutrophils (Paczosa et al., 2014). In fact, in Y. pseudotuberculosis, 
YadA can be used instead of Inv in the invasion of epithelial cells (Bliska et al., 1993, 
Eitel & Dersch, 2002, Yang & Isberg, 1993) because the N-terminal amino acid sequence 
of the YadA protein of Y. pseudotuberculosis can mediate uptake to epithelial cells (Heise 
& Dersch, 2006). YadA elicits an inflammatory response in host cells (Eitel et al., 2005). 
Resistance to complement, phagocytosis, and antimicrobial peptides are also governed by 
YadA (Ho et al., 2012a, Leo & Skurnik, 2011, Paczosa et al., 2014). YadA is a 
haemagglutinin and autoagglutinin (Heise & Dersch, 2006) and contributes to type III 
secretion (Leo & Skurnik, 2011, Paczosa et al., 2014). In Y. pseudotuberculosis, YadA 
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together with chromosomally encoded Ail are required for persistence in the lungs and 
dissemination to the spleen and liver in mice (Paczosa et al., 2014). In the lungs, YadA 
and Ail target Yop injection at neutrophils, which is needed for growth in the lungs 
(Paczosa et al., 2014). 

2.4 Detection 

Pathogenic Yersinia, including Y. pseudotuberculosis, grow slowly and are poor 
competitors, which makes their conventional isolation challenging (Fredriksson-Ahomaa 
& Korkeala, 2003, Skurnik et al., 2009). The isolation of Y. pseudotuberculosis is 
facilitated by using a selective culture medium. Yersinia colony on cefsulodin-irgasan-
novobiocin (CIN) selective agar has a sharply bordered deep red centre and a translucent 
outer zone (Schiemann, 1979). On MacConkey agar supplemented with sorbitol (SMAC), 
Y. pseudotuberculosis forms colourless colonies (Shiozawa et al., 1991).  Growth of Y. 
pseudotuberculosis on CIN agar (Schiemann, 1979) is slower than growth of other 
Yersinia species on the same agar, and thus, direct plating is not effective for the isolation 
of Y. pseudotuberculosis from samples with abundant background flora (Niskanen et al., 
2008, Niskanen et al., 2002). Also overnight enrichment using trypticase soy broth 
followed by incubation in modified Rappaport broth (Wauters, 1973) or selective 
enrichment with Rappaport broth (Wauters, 1973) has been shown to be ineffective in 
isolating Y. pseudotuberculosis from biological samples (Niskanen et al., 2002).  Alkali 
treatment with potassium hydroxide can be used to increase the isolation level of Y. 
pseudotuberculosis from food samples (Aulisio et al., 1980). Probably the most successful 
isolation method for Y. pseudotuberculosis from samples with abundant background flora 
is cold enrichment in phosphate-buffered saline supplemented with 1% mannitol and 
0.15% bile salts followed by alkali treatment and plating on either CIN or SMAC selective 
agar plates (Martinez et al., 2009, Niskanen et al., 2008, Niskanen et al., 2002, Ortiz 
Martínez et al., 2010).  

Y. pseudotuberculosis, Y. similis, and Y. pekkanenii have similar phenotypes in 
biochemical reactions and cannot be distinguished with biochemical tests (Murros-
Kontiainen et al., 2011a, Niskanen et al., 2009, Sprague et al., 2008). This is why PCR 
with primers targeted to inv, virF, and yadA is often used to detect and identify Y.
pseudotuberculosis (Fredriksson-Ahomaa & Korkeala, 2003, Fredriksson-Ahomaa et al., 
2010, Skurnik et al., 2009). Both single and multiplex PCR, either with gel detection or 
real-time detection are used (Fredriksson-Ahomaa & Korkeala, 2003, Fredriksson-
Ahomaa et al., 2010, Skurnik et al., 2009). 
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2.5 Stress 

Y. pseudotuberculosis is capable of growing at refrigeration temperatures and under 
modified atmospheres (Bottone et al., 2005, Fredriksson-Ahomaa et al., 2010). It grows at 
a pH range of 5.0 to 9.6 (Bottone et al., 2005) and in 5% sodium chloride (Fredriksson-
Ahomaa et al., 2010). The ability to tolerate the common preservation methods of the 
modern food chain has increased the importance of this pathogen. Y. pseudotuberculosis 
can also survive for long period in soil (Fukushima et al., 1989, Jalava et al., 2006) and in 
food storage facilities (Rimhanen-Finne et al., 2009). 

A temperature decrease affects the metabolism and function of bacterial cells, with 
temperature being sensed by the cell membrane, nucleic acids, and ribosomes (Phadtare, 
2004). Cell membranes are solidified, which influences cellular transport and secretion. 
Efficiency of transcription and translation is reduced due to stabilized secondary structures 
of RNA and DNA. In addition, low temperature increases negative supercoiling of DNA. 
This changes the positions of promoter regions, thus disturbing promoter recognition by 
the vegetative sigma factor (Phadtare, 2004). Furthermore, most mRNAs cannot be 
translated before cells are adapted to the low temperature (Jones & Inouye, 1996).  

In addition to the physiological endogenous oxidative stress generated during aerobic 
growth due to chemical oxidation of electron carriers by molecular oxygen (Storz & 
Imlay, 1999), Yersinia can encounter oxidative stress in the environment, in foods stored 
at low temperatures, and in the host during the infection process. Numerous reactive 
oxygen species are formed endogenously in bacterial cells at low temperatures because 
electrons accumulate in the respiratory chain due to the slow metabolic rate (Dhar et al., 
2013, Na et al., 2011). In addition, reactive oxygen species are produced by macrophages, 
and deletion of a superoxide dismutase encoding gene resulted in attenuated virulence of 
Y. pseudotuberculosis in mice (Champion et al., 2009). Oxidative stress and reactive 
oxygen species damage DNA, cell membranes, and proteins and cause enzyme 
dysfunction in bacterial cells (Imlay & Linn, 1988, Storz & Imlay, 1999). Y.
pseudotuberculosis is exposed to acid stress in foodstuffs and in the stomach, intestines, 
and macrophages of the host (Kanjee & Houry, 2013).  

2.6 Stress tolerance mechanisms 

Bacteria can use several mechanisms to adapt to a stressful environment. These include 
synthesis of protective enzymes and changes in the gene expression pattern. To safeguard 
against oxidative stress, bacteria even during normal growth produce several antioxidant 
enzymes to protect themselves from damage (Storz & Imlay, 1999). The superoxide 
dismutases SodA and SodB of Y. enterocolitica are reactive oxygen species-detoxifying 
enzymes that function optimally at 4°C and under acidic pH, facilitating the survival of the 
bacterium in the acidic conditions of the phagolysosome and at low temperatures (Dhar et
al., 2013). Production of urease, which catalyses the hydrolysis of urea to carbon dioxide 
and ammonia, increases the survival of Y. pseudotuberculosis in acidic culture media (Hu 
et al., 2009a, Riot et al., 1997). In contrast to Y. enterocolitica, in which production of 
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urease enhances survival of the pathogen in the host (De Koning-Ward & Robins-Browne, 
1995), in Y. pseudotuberculosis, production of urease does not affect survival in the host, 
virulence, or LD50 in mice (Riot et al., 1997).  

When growth temperature changes, fatty acid composition of the bacterial cell 
membrane is altered (Suutari & Laakso, 1994). In E. coli, the thermosensor that senses 
temperature change and affects lipid composition of the cell membrane is situated in the 
cytosol (Mansilla et al., 2004). At low temperatures, the amount of low-melting-point 
unsaturated fatty acids increases due to the activity of the FabF enzyme (Mansilla et al., 
2004). Accordingly, at higher growth temperatures there are more saturated fatty acids in 
the cell membrane (Suutari & Laakso, 1994). Similar to other bacteria, Y. enterocolitica 
and Y. pseudotuberculosis have more unsaturated fatty acids in their cell membranes when 
grown at low temperatures (Bakholdina et al., 2004, Goverde & Kusters, 1994, 
Nagamachi et al., 1991). 

In Y. enterocolitica, different genes are expressed during the cold-shock response and 
during long-term adaptation to low temperature (Bresolin et al., 2006). When growth 
temperature of Y. enterocolitica is decreased from 30°C to 10°C, genes encoding cold-
shock proteins and a gene encoding glutamate-aspartate symporter are first induced 
(Bresolin et al., 2006). After this cold-shock phase, cells continue to divide. At the early 
and middle exponential growth phases, genes encoding environmental sensors and 
regulators and genes related to motility and virulence, including insecticidal toxin genes 
and chemotaxis genes, are activated (Bresolin et al., 2006). In the late exponential and 
early stationary growth phases, genes encoding biodegradative enzymes are induced 
(Bresolin et al., 2006). Induction of biodegradative operons at low temperatures in 
psychrotrophic bacteria probably compensates for low enzyme activities at low 
temperatures, providing a sufficient level of nutrients (Kannan et al., 1998).  

2.6.1 Two-component signal transduction systems 

Bacteria must sense, respond, and adapt to their environment to stay alive. For this, they 
can use two-component signal transduction systems (TCSs) (Capra & Laub, 2012). A 
classical TCS consists of a histidine kinase located in the cell membrane and a response 
regulator located in the cytoplasm (West & Stock, 2001). The histidine kinase senses the 
intra- or extracellular environment, e.g. the availability of nutrients, cellular redox state, 
osmolarity, and antibiotics (Laub & Goulian, 2007). When the histidine kinase senses a 
stimulus, it autophosphorylates. Next, the phosphoryl group is passed to the response 
regulator and the response regulator binds to DNA and affects transcription. Often 
histidine kinases can both phosphorylate and desphosphorylate their response regulator-
pairs. Thus, following a stimulus, either phosphotransfer or phosphatase activity of the 
histidine kinase is induced, activating or inactivating the response regulator, respectively 
(Laub & Goulian, 2007). Most response regulators are transcription factors that can either 
induce or repress transcription of specific genes (Stock et al., 2000). However, some 
response regulators function as enzymes and others use assistant proteins to influence, for 
example, cell motility (Stock et al., 2000). A phosphorelay is a modification of a TCS 
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composed of a hybrid histidine kinase, a histidine phosphotransferase (Hpt), and a 
response regulator (Laub & Goulian, 2007). Hpt passes the phosphoryl group from the 
hydrid histidine kinase to the response regulator (West & Stock, 2001). Thus, many TCSs 
contain more than two components. 

NtrB/NtrC TCS of E. coli was the first TCS described (Ninfa & Magasanik, 1986), and 
many homologous proteins were soon reported in E. coli and other bacteria (Nixon et al., 
1986). Thus, most bacteria have TCSs (Capra & Laub, 2012). On average, in eubacteria 
TCS proteins form 1% of encoded proteins (West & Stock, 2001). However, there is 
variation in the number of TCSs in different bacteria (Stock et al., 2000). Whereas 
Synechocystis sp. encodes 80 TCS proteins, Mycoplasma genitalium encodes none (Stock 
et al., 2000). The genome of Y. pseudotuberculosis IP32953 was found to contain 24 
complete TCSs and 5 orphan hybrid histidine kinases or response regulators in in silico 
analysis (Marceau, 2005). Not all TCSs of Y. pseudotuberculosis have been investigated. 
However, several TCSs of Y. pseudotuberculosis play a role in virulence and/or in 
resistance to environmental stressors, including stresses encountered in the host (Table 2). 

 
Table 2. Two-component signal transduction systems of Yersinia pseudotuberculosis that 
have been investigated. 
Name Component1 Function 
NtrB/NtrC HK/RR Bile salt resistance (Flamez et al., 2008) 
CpxA/CpxR HK/RR Eukaryotic cell contact (Carlsson et al., 

2007b), type III secretion (Carlsson et al., 
2007a, Liu et al., 2012), regulation of 
virulence gene expression during 
extracytoplasmic stress (Liu et al., 2011) 

PmrB/PmrA HK/RR Acid and bile salt resistance (Flamez et al., 
2008); role in peptidoglycan homeostasis 
possible (Marceau et al., 2004) 

ArcB/ArcA HK, Hpt/RR Hydrogen peroxide and bile salt resistance 
(Flamez et al., 2008) 

BarA/UvrY HK, RR, Hpt/RR Involved in the expression of virulence genes 
(Heroven et al., 2008, Heroven et al., 2012b) 

RcsC/YojN/RcsB HK, RR/Hpt/RR Regulates cell envelope, virulence, motility, 
and biofilm formation (Hinchliffe et al., 
2008). Bile salt resistance in some strains 
(Hinchliffe et al., 2008), bile salt 
susceptibility in others (Flamez et al., 2008, 
Hinchliffe et al., 2008) 

RstB/RstA HK/RR Hydrogen peroxide resistance, virulence 
(Flamez et al., 2008) 
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Name Component1 Function 
PhoQ/PhoP HK/RR Antimicrobial (Bozue et al., 2011, Flamez et

al., 2008, Marceau et al., 2004), acid, and 
osmotic stress resistance (Flamez et al., 
2008); virulence (Bozue et al., 2011, Fisher et
al., 2007, Flamez et al., 2008, Grabenstein et
al., 2004); survival and replication in 
macrophages (Bozue et al., 2011, 
Grabenstein et al., 2004); biofilm regulation 
(Sun et al., 2009); hydrogen peroxide and bile 
salt susceptibility (Flamez et al., 2008) 

YfhK/YfhA HK/RR Virulence and susceptibility to antimicrobial 
agents (Flamez et al., 2008), role in 
glucosamine-6-phosphate synthesis (Göpel et 
al., 2011) 

Envz/OmpR HK/RR Osmotic stress, acid and bile salt resistance 
(Flamez et al., 2008, Hu et al., 2009a); 
involved in flagella biosynthesis (Hu et al., 
2009b); antimicrobial agent susceptibility and 
virulence (Flamez et al., 2008); regulation of 
type VI secretion system (Gueguen et al., 
2013, Zhang et al., 2013) 

CvgSY HK, RR Virulence (Karlyshev et al., 2001) 
1HK, histidine kinase; RR, response regulator; Hpt, histidine phosphotransferase; separate 
proteins of the system are segregated with / 

 
A role of TCSs in cold stress has been demonstrated in bacteria. In Clostridium 

botulinum, TCSs cbo0365/cbo0366, cbo2306/cbo2307, and clo3403/clo3404 are essential 
for optimal growth at low temperatures (Derman et al., 2013, Lindström et al., 2012, 
Mascher et al., 2014). In Listeria monocytogenes, TCSs LisK/LisR, lmo1061/lmo1060, 
and lmo1173/lmo1172 enhance growth immediately following a temperature drop, and are 
indispensable after cells have adapted to the low temperature (Chan et al., 2008). In 
Bacillus subtilis, TCS DesK/DesR is involved in desaturation of membrane lipids in 
response to a temperature drop (Aguilar et al., 1998, Aguilar et al., 2001). 

Despite the large number of TCSs in many bacteria, cross-talk between non-cognate 
histidine kinases and response regulators is rare (Groban et al., 2009, Podgornaia & Laub, 
2013). Cross-regulation, advantageous cross-talk, is seldom used in situations where 
combining multiple signals into one response or expanding one signal to many responses 
is beneficial (Laub & Goulian, 2007). 
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2.6.2 Sigma factors 

In bacteria, a housekeeping sigma factor is used for transcription of most promoters 
(Österberg et al., 2011). Alternative sigma factors are used for transcription of genes 
needed for adaptation to changing environmental conditions. The more variable the 
environment in which a bacterium lives, the more alternative sigma factors its genome 
encodes (Österberg et al., 2011). Typically, alternative sigma factors are regulated 
stringently to hinder their competition with the housekeeping sigma factor under non-
stress conditions (Battesti et al., 2011). The genome of E. coli contains six alternative 
sigma factors in addition to the vegetative sigma factor, while the Gram-positive 
Streptomyces coelicolor has 63 sigma factors (Gruber & Gross, 2003). The genome of Y.
pseudotuberculosis IP32953 encodes seven sigma factors (Chain et al., 2004). The sigma 
factors of E. coli and Y. pseudotuberculosis strain IP32953 are listed in Table 3. The 
requirement of alternative sigma factors in stress conditions has been demonstrated in food 
pathogens C. botulinum (Dahlsten et al., 2013) and L. monocytogenes (Mattila et al., 
2012, Raimann et al., 2009). Alternative sigma factors E, S, FliA, and 54 have been 
investigated in enteropathogenic Yersinia. 

 
Table 3. Sigma factors of Escherichia coli and Yersinia pseudotuberculosis. 
Sigma factor Function in E. coli1 Locus tag in Y.

pseudotuberculosis 
IP329532 

70 Family   
70/D Housekeeping sigma factor, essential YPTB3418 
38/S Stationary phase and general stress 

response sigma factor  
YPTB0776 

28/FliA Flagellar sigma factor YPTB1715, YPTB3320 
19/FecI Iron citrate uptake sigma factor Not identified 
24/E Extracytoplasmic stress sigma factor, 

essential 
YPTB2897 

32/H Heat-shock sigma factor YPTB0224 
54 Family   
54/N Nitrogen metabolism sigma factor, also 

involved in several different 
physiological processes 

YPTB3526 

1Reviewed by Buck et al. (2000), Gruber & Gross (2003), Hengge (2009), Wösten (1998), 
Österberg et al. (2011) 
2Chain et al. (2004) 
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E 

An alternative sigma factor, E is activated in E. coli when composition or folding of cell 
envelope proteins is disturbed due to heat (Erickson & Gross, 1989), increased expression 
of outer membrane proteins (Mecsas et al., 1993), ethanol (Raina et al., 1995), or high 
osmolality (Bianchi & Baneyx, 1999). In addition, transcription of rpoE encoding E is 
induced during cold-shock response and during growth at low temperatures in E. coli 
(Moen et al., 2009, Polissi et al., 2003). E is also involved in raising genetic diversity and 
allowing cell survival in a stringent environment via stress-induced mutagenesis in E. coli 
(Gibson et al., 2010). In E. coli and in other Enterobacteriaceae, E regulates transcription 
of genes associated with pathogenesis (Rhodius et al., 2006). In addition, E-dependent 
envelope stress response assists survival of many Gram-negative pathogens in the host, 
and E is required for full virulence (Raivio, 2005).  

In E. coli, rpoE is an essential gene (Baba et al., 2006, De Las Penas et al., 1997). At 
the amino acid level, rpoE encoding E differs between Y. pseudotuberculosis IP32953 
and E. coli K-12 by 7% (Blattner et al., 1997, Chain et al., 2004). In Y. enterocolitica and 
Y. pseudotuberculosis, E has been proposed to be involved in pathogenesis and virulence 
(Carlsson et al., 2007a, Heusipp et al., 2003, Young & Miller, 1997).  

S 

In E. coli and other -proteobacteria, S regulates general stress response (Hengge, 2009). 
S controls up to 10% of all of the genes of E. coli (Weber et al., 2005). S is induced in E.

coli in several stress conditions, including beginning of the stationary growth phase, 
hyperosmolarity, high or low temperature, acidic or alkaline pH, and high cell density 
(Allen et al., 2008, Battesti et al., 2011, Moen et al., 2009, Sledjeski et al., 1996, White-
Ziegler et al., 2008). A hairpin loop in the 5’untranslated region of rpoS mRNA inhibits 
its translation when S is not needed. Small RNAs (sRNA) together with an RNA 
chaperone protein Hfq open the hairpin and the rpoS mRNA can be translated (Battesti et
al., 2011). At a low temperature (24°C), an additional factor, DEAD-box helicase CsdA, is 
needed for S synthesis in E. coli (Resch et al., 2010). CsdA opens the hairpin loop 
structure of the rpoS mRNA, allowing sRNA DsrA (Sledjeski et al., 1996) to bind to the 
rpoS mRNA and induce its translation at low temperatures in E. coli (Resch et al., 2010).  
A S-mediated stress response activated because of one stress condition gives the 
bacterium cross-protection against other stress conditions as well (Battesti et al., 2011). 
The purpose of this cross-protection is to prevent cell damage (Hengge-Aronis, 2002). 
Also stress resistance mechanisms overlap. Transcription of otsA and otsB encoding 
trehalose-synthesizing enzymes requires S at a low temperature (16°C) in E. coli 
(Kandror et al., 2002). During the cold-shock response E. coli cells synthesize and 
accumulate disaccharide trehalose, which increases cell viability at temperatures near 0°C 
(Kandror et al., 2002). The S-dependent expression of otsA and otsB, and thus, 
accumulation of intracellular trehalose, is also needed for resistance to high osmolarity 
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and high temperature (Battesti et al., 2011). In addition, S controls the expression of 
several virulence genes in pathogenic Enterobacteriaceae (Hengge-Aronis, 2002).  

In Y. enterocolitica grown at 37°C, mutation of rpoS encoding S reduces survival 
from stress caused by hydrogen peroxide, high osmolarity, high temperature, and low pH 
(Badger & Miller, 1995). Mutation affects also cell morphology at 37°C. At 26°C 
mutation does not have effects on stress survival or cell morphology (Badger & Miller, 
1995). In addition, mutation of rpoS does not affect Inv or Ail levels (Badger & Miller, 
1995), invasion in vitro (Badger & Miller, 1995) or in vivo (Iriarte et al., 1995b), or LD50 
(Badger & Miller, 1995, Iriarte et al., 1995b). The function of S of Y. pseudotuberculosis 
has not been investigated. The gene rpoS encoding S is 99% similar at the amino acid 
level in Y. pseudotuberculosis IP32953 and Y. enterocolitica 8081 (Chain et al., 2004, 
Thomson et al., 2006). 

FliA 

28 or FliA is a flagellar sigma factor that positively controls expression of class III 
flagellar genes encoding components of flagellar filament and hook-associated, motor, and 
chemotaxis proteins (Ding et al., 2009, Soutourina & Bertin, 2003). In Y. enterocolitica, 
fliA encoding FliA is essential for motility (Iriarte et al., 1995a). In Y. enterocolitica, the 
expression of flagellar genes is maximal at 20°C (Bresolin et al., 2008), and flagellin 
genes (Kapatral & Minnich, 1995) and fliA (Kapatral et al., 1996) are not transcribed at 
37°C. In Y. pseudotuberculosis, at 22°C fliA is expressed 25-fold more than its expression 
at 37°C (Atkinson et al., 2008). Thus, Y. enterocolitica and Y. pseudotuberculosis are non-
motile at temperatures higher than 30°C (Marceau, 2005). Deletion of fliA does not affect 
pathogenicity of Y. enterocolitica (Iriarte et al., 1995a), even though FliA controls 
positively transcription of yplA encoding a virulence factor phospholipase YplA (Schmiel 
et al., 2000) and negatively several virulence genes encoded in pYV through VirF at 25°C 
(Horne & Prüß, 2006) in Y. enterocolitica. In Y. pseudotuberculosis, expression of yplA is 
not controlled by the flagellar regulon (Meysick et al., 2009).  

54 

The 54 family of sigma factors has only one member, sigma factor 54 (Wösten, 1998). 
The sigma factors of this family have no homology with the sigma factors of the 70 
family (Reitzer, 2003). In addition to the genes associated with nitrogen metabolism, 54-
regulated genes include genes involved in tolerance of acid and alkaline stress and 
universal stress response in E. coli (Reitzer, 2003). In Y. pseudotuberculosis, 54 and 
response regulator YfhA of TCS YfhK/YfhA control transcription of sRNAs GlmY and 
GlmZ involved in the production of glucosamine-6-phosphate, and thus, cell wall and 
outer membrane synthesis (Göpel et al., 2011). 
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2.6.3 Cold-shock proteins and cold-induced proteins 

When temperature suddenly decreases by at least 10°C, the cold-shock response is 
induced (Jones et al., 1987). During this response, while general protein synthesis 
decreases and bacteria stop dividing, small cold-shock proteins (Csps) and other cold-
induced proteins (Cips) are synthesized (Phadtare, 2004). E. coli encodes nine Csps of 
which CspA, CspB, CspE, CspG, and CspI are induced at low temperatures (Phadtare, 
2004, Uppal et al., 2008). In E. coli, Csps can replace each other (Phadtare, 2004, Xia et
al., 2001). At low temperatures, Csps destabilize the secondary structures of RNA and 
they are RNA chaperones, which helps transcription and translation, and thus, growth 
(Brandi et al., 1999, Jiang et al., 1997, Phadtare, 2004). Cips of E. coli include proteins 
involved in transcription (Gualerzi et al., 2003, Jones et al., 1987, La Teana et al., 1991, 
Madrid et al., 2001), translation (Agafonov et al., 1999, Agafonov & Spirin, 2004, 
Giangrossi et al., 2007, Giuliodori et al., 2004, Gualerzi et al., 2003, Jones et al., 1996, 
Jones et al., 1987, Xia et al., 2003), RNA metabolism (Jones et al., 1996, Jones et al., 
1987), homologous recombination and SOS response (Gualerzi et al., 2003, Jones et al., 
1987), cellular metabolism (Jones et al., 1987), and chromosome replication (Atlung & 
Hansen, 1999). The purpose of Csp and Cip production is to adapt cells to the new 
temperature and to promote cell growth (Brandi et al., 1999, Jiang et al., 1997, Phadtare, 
2004). After adaptation to the low temperature, Csp and Cip synthesis decreases and cells 
grow at a lower rate (Jones et al., 1987).  

In addition to Csp synthesis during cold shock, Csps can be produced throughout the 
growth cycle or during nutriotional upshift (Brandi et al., 1999, Yamanaka & Inouye, 
2001). Furthermore, CspC and CspE are involved in S-mediated general stress response 
in E. coli (Battesti et al., 2011). Overexpression of CspC and CspE stabilizes rpoS mRNA 
and increases the amount of S (Phadtare & Inouye, 2001), while deletion of cspC 
decreases rpoS expression (Cohen-Or et al., 2010). CspC and CspE are also required for 
proper expression of S during osmotic stress (Phadtare & Inouye, 2001). 

Csps are highly conserved proteins (Graumann & Marahiel, 1998). They contain a 
cold-shock domain (CSD), which is very similar to a domain present in nucleic-acid-
binding proteins of eukaryotes (Graumann & Marahiel, 1998). This means that a common 
ancestor of eukaryotes and prokaryotes 3.5 billion years ago probably had a CSD protein 
(Graumann & Marahiel, 1998). Several Gram-positive and Gram-negative bacteria 
produce Csps, but Csps are lacking in archaea and cyanobacteria (Phadtare, 2004). 

Cip CsdA is a cold-induced RNA helicase (Jones et al., 1996) belonging to the highly 
conserved family of DEAD-box (asp-glu-ala-asp) proteins (Linder et al., 1989). The need 
for CsdA in E. coli is higher at 15°C than at 25°C, and deletion of csdA impairs growth at 
temperatures below 25°C (Awano et al., 2007, Charollais et al., 2004, Jones et al., 1996, 
Turner et al., 2007). The importance of DEAD-box helicases during cold stress has also 
been demonstrated in L. monocytogenes and Bacillus cereus (Azizoglu & Kathariou, 
2010, Markkula et al., 2012, Netterling et al., 2012, Pandiani et al., 2010). Secondary 
structures of RNA are stabilized at low growth temperatures, but by unwinding double-
stranded RNA, CsdA facilitates translation initiation at cold temperatures in E. coli (Jones 
et al., 1996, Lu et al., 1999). CsdA is involved in the degradation of mRNAs in E. coli 
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(Khemici et al., 2004, Prud’homme Généreux et al., 2004, Yamanaka & Inouye, 2001). In 
addition, at low temperatures it is needed for the biogenesis of 50S ribosomal subunits 
(Charollais et al., 2004, Peil et al., 2008) and also at 37°C in the early exponential growth 
phase in E. coli (Peil et al., 2008).  

Regulation of Csp and Cip synthesis 

The most significant regulation of protein synthesis during the cold-shock response takes 
place at the post-transcriptional and translational levels (Goldenberg et al., 1997, Gualerzi 
et al., 2003). Csp and Cip mRNAs are very stable immediately after a temperature 
downshift (Goldenberg et al., 1996, Mitta et al., 1997, Uppal et al., 2008, Xia et al., 
2002). In addition, at low temperatures, translation of most mRNAs is reduced, but Csp 
and Cip mRNAs are translated efficiently (Jones & Inouye, 1996). This translational bias 
is due to the structure of the mRNAs; the long 5’ untranslated region (5’UTR) of CspA 
mRNAs has an affinity to ribosomes (Xia et al., 2002), and secondary and tertiary 
structures of the 5’UTRs of Csp and Cip mRNAs facilitate translation (Giuliodori et al., 
2004, Uppal et al., 2008, Yamanaka et al., 1999). Furthermore, increased synthesis of 
initiation factors after a temperature downshift favours the translation of Csp and Cip 
mRNAs (Giangrossi et al., 2007, Giuliodori et al., 2004, Giuliodori et al., 2007). Thus, 
translation of mRNAs other than those of Csp or Cip is hindered during the cold-shock 
response. 

Cold-shock proteins of Yersinia 

The genomes of enteropathogenic Yersinia have several csp genes (Palonen et al., 2010). 
Two of them, cspA1 and cspA2, are almost identical and are located next to each other 
(Neuhaus et al., 1999). In Y. enterocolitica, both monocistronic and bicistronic mRNAs 
are produced from these loci, enabling rapid adaptation of this bacterium to low 
temperatures (Neuhaus et al., 1999). Because Csp and Cip mRNAs hold ribosomes, and 
thus, block the translation of other mRNAs, in order to resume growth of the cell 
population, Csp and Cip mRNAs must be degraded (Neuhaus et al., 2000). As 
demonstrated in Y. enterocolitica, cell division restarts when the amount of cspA1/A2 
transcripts has decreased sufficiently (Neuhaus et al., 2000). To enable efficient 
degradation of Csp mRNAs after the cold-shock response, cspA1/A2 mRNAs of Y.
enterocolitica have special cleavage sites for RNase E, which begins the degradation of 
the transcripts. After cleavage by ribonuclease (RNase) E, polynucleotide phosphorylase 
(PNPase) continues cspA1/A2 transcript degradation (Neuhaus et al., 2003). For Y.
enterocolitica and Y. pseudotuberculosis, PNPase is essential for growth at low 
temperatures (Goverde et al., 1998, Rosenzweig et al., 2005). 
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3 AIMS OF THE STUDY 

The general objectives of this study were to investigate the genetic variability of virulence 
genes used in the detection and identification of Y. pseudotuberculosis and to evaluate the 
stress tolerance mechanisms of the pathogen. 
 
Specific objectives were as follows: 
 

1. To investigate the genetic variability of virulence genes inv, virF and yadA of 
different Y. pseudotuberculosis and Y. similis strains (Study I). 

 
2. To assess the role of TCSs of Y. pseudotuberculosis IP32953 in cold tolerance 

(Study II). 
 

3. To investigate the role of E of Y. pseudotuberculosis IP32953 in cold, heat, 
osmotic, ethanol, acid, and alkaline stress (Study III). 

 
4. To evaluate the role of RNA helicase CsdA in cold tolerance in Y.

pseudotuberculosis IP32953 (Study IV). 
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4 MATERIALS AND METHODS 

4.1 Bacterial strains, plasmids, and growth conditions (I-IV) 

The Y. pseudotuberculosis and Y. similis strains used in Study I are listed in Table 4. All 
of the genetic modifications were done in strain IP32953, a generous gift from Elisabeth 
Carniel, Institut Pasteur, Paris, France. The strains and plasmids used in Studies II-IV are 
presented in Table 5.  

Bacteria were grown on Luria-Bertani (LB) agar plates (BD, Franklin Lakes, NJ, USA) 
or in LB broth (BD). Y. pseudotuberculosis and Y. similis were cultivated at 30°C, at 
28°C, or at 37°C, and E. coli at 37°C. Y. pseudotuberculosis was grown at 3°C and at 
42°C in cold and heat stress experiments, respectively. In other stress experiments, the pH 
of the broth was adjusted to 5.0 (with 1M HCl) or 9.0 (with 1M NaOH), or contained 30 
g/l NaCl or 3% ethanol. Culture media were supplemented with 5 mM CaCl2 to inhibit the 
release of Yops at 37°C and 42°C (Mulder et al., 1989), or with antibiotics (Sigma-
Aldrich Co., St. Louis, MO, USA) when appropriate. Plate count agar (PCA) (Sigma-
Aldrich Co.) was used in the verification of the correspondence of optical density at 600 
nm (OD600) values and the number of viable bacteria. Tryptic soy agar (TSA) (BD) 
containing 1.5% or 2.5% agar was used to determine the minimum and maximum growth 
temperatures, respectively. 

4.2 PCR amplification, sequencing, and sequence analysis (I) 

The sequenced strain IP32953 (Chain et al., 2004) was used in primer design using 
Primer3 software (Rozen & Skaletsky, 2000) (I, Table S1).  Pitcher’s method (Pitcher et
al., 1989) was used to extract the genomic DNA from the Y. pseudotuberculosis and Y.
similis strains, and the Qiagen Plasmid Midi Kit (Qiagen GmbH, Hilden, Germany) was 
used for extraction of plasmid DNA according to the manufacturer’s instructions. PCR 
was performed with the Titanium Taq DNA polymerase (Clontech Laboratories Inc., 
Mountain View, CA, USA) following the manufacturer’s instructions. Each reaction 
contained 200 μM of dNTPs, 0.3 μM of both primers, 100 ng of DNA template, and had a 
total volume of 50 μl. The cycling protocol for products under 1000 bp included 
predenaturation at 95°C for 1 min, and 29 cycles of denaturation at 95°C for 30 s, 
annealing at 50°C for 30 s, and extension at 72°C for 1 min, and a final extension at 72°C 
for 2 min. Extension times were 90 s and 2 min for products between 1000 and 1500 bp 
and between 1500 and 2000 bp, respectively. The PCR products were visualized in 
agarose gel, and the desired products were purified by using the QIAquick Gel Extraction 
Kit (Qiagen GmbH) according to the manufacturer’s instructions. Sequencing was 
performed at the Institute of Biotechnology, University of Helsinki, Finland.  

The Phred (Ewing & Green, 1998) was used in base-calling and quality assignment of 
the raw sequences, and the gap4 program in the Staden package (Staden, 1996) was used 
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to construct gene sequences. Phylogenetic trees were created using MEGA (Tamura et al., 
2007), and alignment of sequences was done with CLUSTAL. The Kimura 2-parameter 
model for nucleotide sequences was used to build neighbour-joining trees with 1000 
bootstrap replicates. No evolution model was used in calculation of pairwise sequence 
similarities. 

 
Table 4. Yersinia pseudotuberculosis and Yersinia similis strains used in Study I. 
Strain Origin Country Source1 
Y. pseudotuberculosis    
H346-36/89 Human Germany M. Skurnik 
WS899K Capybara Germany DFHEH 
YLI16.9 Song thrush Sweden DFHEH 
LE116.1K Cat Finland DFHEH 
A162.1K3 Lettuce Finland DFHEH 
553 Soil Russia M. Skurnik 
P30 Buffalo Brazil M. Skurnik 
S107 Rabbit China M. Skurnik 
476 Pig Italy M. Skurnik 
43K.3 Pig England DFHEH 
H5N6.1.1K2D Pig Belgium DFHEH 
T3.2.2K Pig England DFHEH 
T1.4.1K Pig England DFHEH 
14994/83 Human Finland M. Skurnik 
T6.2.2C Pig England DFHEH 
2B1 Roasted fish Nigeria DFHEH 
S53B1-3/IIIC Shrew Finland DFHEH 
283 Human Canada M. Skurnik 
Y. similis    
R626R Mole Japan M. Skurnik 
R220 Field mouse Japan M. Skurnik 
1Mikael Skurnik, Haartman Institute, Department of Bacteriology and Immunology, 
University of Helsinki, and HUSLAB, Helsinki University Central Hospital, Finland; 
DFHEH, Department of Food Hygiene and Environmental Health, University of Helsinki, 
Finland 
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Table S1. Primers used in Study I. Start site is reported in relation to the start codon of 
strain IP32953. Table derived from Study I. 
Gene (locus tag) Primer Direction

1 
Sequence Start 

site 
inv (YPTB1668) 1 F TTGTGGCCAGTTATACCTCAAA -100 

 2 R TTAAGTGTGTTGCGGCTGTC 596 
 3 F TGGCTCCTTGGTATGACTCTG 515 
 4 R GTTGCTGGCGATAATGTCAGT 1208 
 5 F TTTAATCTGCCCAGTCTGGTTT -229 
 6 R GGTGACGCTCAATGTGAATG 1488 
 7 R AACGGTGATTGCAGTTTTCC 1569 
 8 F GGAGTGATGCCGAACTGATT 1286 
 9 R AGCTATCTGGCTGCTCGGTA 2275 
 10 F AGTTTCACCGTCTCCACACC 2104 
 11 R CAACGCCGTTCAATTAACCT 3098 
 12 F GCTCGTTTGTGGCCAGTTAT -107 
 13 R CTGGGCGCTCTTTATAGTCG 802 
 14 F TAAAGACAGCCGCAACACAC 573 
 15 R AAAGTTGGCTGTCAGGTCGT 1419 
 16 F TTAAGATTAACGCCGCATCC -974 
 17 R CTGGGCGCTCTTTATAGTCG 802 
 18 F AGTTTCACCGTCTCCACACC 2104 
 19 R CAAGCATTGGCAGTCTTGAA 3239 
 20 F GGTTGGCTGTACGGACTTAATAC 628 
 21 R AGCTATCTGGCTGCTCGGTA 2275 

virF (pYV0076) 22 F TTGGTTGCATTAATCGATGGT -104 
 23 R TTTGATGGAGGTCGTTTCTTG 1025 
 24 F GGTTGTACATCGCACGCATA -86 
 KvirFL2 F TCGTGGCAGCTATGCTGTTC 162 
 KvirFR2 R ATACGTCGCTCGCTTATCCA 653 
 25 F TCTCTTTTCCAGAGCGAGGA -248 
 26 R TTTCGTTGAAATTTGGCTCA 915 
 27 F GGTTGTACATCGCACGCATA -86 
 28 R AAATTTGGCTCATCCCATTG 907 

yadA (pYV0013) 29 F TTCTATGGGAGGCGTTCG -97 
 30 R AGCGACACCAGTATCCGAAG 525 
 31 F TTGGGAGATTCGGCAGTTAC 427 
 32 R GCTGTTTAAAGCGGCTGAAC 1113 
 33 F TCGCGCAATTAAAGAAAGAAA 731 
 34 R CCCATGTAACTGAAACCATGAT

AA 
1426 

 35 F CCTCGTTTGTCAGCAGTTCA 106 
 36 R TGAGCCAAAGTCTCTTTACGTG 794 
 37 F CTCTTCTATGGGAGGCGTTC -100 
 38 R CCCGTAGCAAATATCGGAGA 1487 
 39 F TATCCGGTTTGAGGTGAGGA -311 
 40 F GTGGATAACGCTCGACCACT -627 
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Gene (locus tag) Primer Direction
1 

Sequence Start 
site 

 41 R TTCAGCAGTAGCACCAATCG 339 
 42 F CTTAAAGCCGGTGTGGCTTA 1228 
 43 R AATCGCTTCACGTTCTGGAT 1943 
 44 F CCTCGTTTGTCAGCAGTTCA 106 
 45 R TCGGTGTTTTCCTATAGACTTGT

T 
1338 

 46 F CGGTGTACCCGTTTATGGTT -700 
 47 R ACATAAATCGGATGCCCGTA 1501 
 48 F CTTCTATGGGAGGCGTTCG -98 
 49 R CGCTGCTTCAGCAGTAGAAC 345 

1 F, forward; R, reverse 
2Kaneko et al. (1995) 

4.3 RNA isolation (II-IV) 

To investigate the expression of genes encoding TCSs and csdA, Y. pseudotuberculosis 
IP32953 was grown to the early logarithmic growth phase at 3°C and 28°C. Expression of 
rpoE was investigated at early and late logarithmic growth phases at 3°C, 28°C, 37°C, and 
42°C, and under acid, alkaline, osmotic, and ethanol stress. Bacteria were grown as three 
biological replicates in all experiments. Cells were collected by mixing bacterial culture 
with a cold phenol-ethanol mixture (1:9), kept on ice for 30 min, and centrifuged at 2°C at 
5000×g for 15 min. Before RNA isolation, cell pellets were stored at -70°C. The total 
RNA was isolated using the RNeasy kit (Qiagen GmbH) with the RNase-free DNase set 
(Qiagen GmbH) following the manufacturer’s instructions. The second DNase treatment 
was done using the DNA-free kit (Applied Biosystems, Foster City, CA, USA) according 
to the manufacturer’s instructions. The Nanodrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific Inc., Waltham, MA, USA) and the Agilent 2100 Bioanalyzer (Agilent 
Technologies Inc., Santa Clara, CA, USA) were used to determine the A260/A280 ratio 
and the integrity of RNA, respectively. The isolated RNA was kept at -70°C before use. 

4.4 Reverse transcription (II-IV) 

The RNA samples were reverse-transcribed into cDNA in duplicate by using the Dynamo 
cDNA synthesis kit (Thermo Scientific) following the manufacturer’s instructions. 
Secondary structures of RNA were destabilized by incubating RNA for 5 min at 65°C. 
The reaction mixture containing 300 ng of random hexamers, 900 ng of RNA, and 2 μl of 
M-MuLV RNase H+ reverse transcriptase had a total volume of 20 μl and was incubated 
at 25°C for 10 min, at 37°C for 30 min, and at 85°C for 5 min. Minus-RT controls, having 
all the reaction components except the reverse transcriptase, were prepared from all RNA 
samples. The resulting cDNAs were stored at -20°C until use. 
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4.5 Quantitative real-time reverse transcription-PCR (II-IV)  

In quantitative real-time reverse transcription-PCR (RT-qPCR), the Dynamo Flash SYBR 
Green qPCR kit (Thermo Scientific) was used according to the manufacturer’s 
instructions. Primer3 software (Chain et al., 2004, Rozen & Skaletsky, 2000) was utilized 
to design the primers (Table 7). Each reaction contained 4 μl of template cDNA, 0.5 μM 
of both primers, and had a total volume of 20 μl. The Rotor-Gene 3000 Real-Time 
Thermal Cycler (Qiagen GmbH) was used in PCR runs with the cycling protocol 
consisting of initial denaturation at 95°C for 10 s, annealing at 60°C for 15 s, extension at 
72°C for 20 s, and a final extension at 60°C for 1 min. At the end of each extension step, 
fluorescence data were acquired. To confirm specificity, a melt curve analysis was done 
after each run. A dilution series of pooled cDNA was used in triplicate to determine the 
amplification reaction efficiency of each primer pair. The threshold fluorescence level for 

each primer pair and reaction efficiency as 110
1
M , where M is the slope of the straight 

line from a semilogarithmic plot of the quantification cycle (Cq) as a function of the cDNA 
concentration, were defined with the Rotor-Gene 3000 software. Reaction efficiencies 
varied between 0.86 and 1.11. The cDNA dilutions 1:20 and 1:100000 were used in 
duplicate in the PCR amplification of the genes of interest and 16S rrn, respectively. The 
relative expression levels of investigated genes were normalized to 16S rrn and calibrated 
to samples taken at 28°C. Samples grown at 28°C with 5 mM CaCl2 were used in 
calibration for samples collected at 37°C and 42°C.  The gene expression levels were 
quantified by calculating the expression ratios (R) with the equation 

)samplecalibrator(C
16

)samplecalibrator(C

16,q

,q

E1
E1

R
Srrn

gene

Srrn

gene  (Pfaffl, 2001), where Egene is the amplification reaction 

efficiency of the transcript of the gene of interest, E16Srrn is the amplification reaction 
efficiency of 16S rrn transcripts, Cq,gene is the Cq deviation between calibrator and 
sample for the transcript of the gene of interest, and Cq,16Srrn is the Cq deviation between 
calibrator and sample for the 16S rrn transcripts. To evaluate the significance of the 
differences between the relative expression levels of the gene of interest under different 
growth conditions, Student’s t test was used. 
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4.6 Mutagenesis (II-IV) and complementation of the mutants (III, 
IV) 

The mutants were constructed by using the TargeTron gene knockout system (Sigma-
Aldrich Co.) following manufacturer’s instructions.  The primers used in mutagenesis and 
complementation are listed in Table 8. The RNA segment of the intron was retargeted, 
ligated into the plasmid pACD4K-C (Sigma-Aldrich Co.), and transformed to E. coli. 
Electrocompetent Y. pseudotuberculosis IP32953 was prepared as described previously 
(Conchas & Carniel, 1990), and a strain with the source of T7 RNA polymerase 
(pAR1219) was prepared. The pACD4K-C with the retargeted intron was introduced into 
the strain IP32953/pAR1219 by electroporation. Isopropyl -D-thiogalactoside was used 
to induce intron expression and insertion. Insertion of the intron, the species Y.
pseudotuberculosis, and the presence of the pYV were confirmed by PCR. Southern 
blotting using the PCR DIG probe synthesis kit (Roche Applied Science, Penzberg, 
Germany) was performed to confirm single-intron insertion in the mutant genome. 
Domains of genes were searched using the InterProScan tool (Hunter et al., 2009). 

To complement the rpoE475 mutant strain, the tetracycline resistance gene in pBR322 
(Bolivar et al., 1977) was amplified by PCR, digested, and ligated to the digested 
pBluescript, resulting in pBlue-tetR. The coding sequences of rpoE, rseA, and rseB and 
their putative native promoter were amplified by PCR. The resulting PCR product and the 
pBlue-tetR were digested and ligated, yielding pBlue-tetR-rpoE. To complement the csdA 
mutants, the coding sequence of csdA and its putative native promoter were amplified by 
PCR. The resulting PCR product and the vector pBluescript were digested and ligated, 
resulting in pBluescript-csdA. The correct sequences of the complementation plasmids 
were verified by sequencing. The mutants were cured of pAR1219 and confirmed by PCR 
for the correct species and the presence of the mutation and pYV. The complementation 
plasmids and the vector controls were electroporated into the mutants. The resulting 
strains were confirmed by PCR. 
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4.7 Growth experiments (II-IV) and motility tests (II) 

Three separate colonies of the wild-type strain, and each mutant, complemented mutant, 
and vector control were grown overnight in LB broth containing ampicillin when 
appropriate. The overnight cultures were diluted (1:100) into fresh culture media 
supplemented with ampicillin, CaCl2, or modified for stress experiments as appropriate. 
Growth was analysed in triplicate in microtitre plates in the turbidity reader Bioscreen C 
MBR (Oy Growth Curves Ab, Helsinki, Finland). Growth curves were generated by 
plotting the OD600 values against time. The correlation between OD600 values and the 
number of viable bacteria was confirmed by inoculating overnight culture into fresh 
culture media and plating on PCA supplemented with ampicillin when appropriate at 
several time-points during the growth.  

To test the motility, the wild-type strain and the mutants were stab-inoculated into 
tubes containing motility test medium M103 with 2,3,5-triphenyl tetrazolium chloride 
(Weagant & Feng, 2001) and 0.3% agar. Bacteria were grown at 3°C, 22°C, 28°C, and 
37°C, and the tubes were observed for 22, 9, 6, and 6 days, respectively.  

4.8 Minimum and maximum growth temperatures (III, IV) and 
freezing and thawing experiments (IV) 

Three separate colonies were grown overnight in LB broth containing ampicillin when 
appropriate. The cultures were diluted 1:100 in peptone water and stamped in triplicate 
using a piece of glass to cuvettes containing TSA supplemented with ampicillin when 
appropriate. The cuvettes were located in the Gradiplate W10 temperature gradient 
incubator (BCDE Group, Helsinki, Finland). For minimum growth temperature 
determinations, the temperature gradient was set from 1.7°C to 6.3°C or from 0.8°C to 
9.5°C, and the cuvettes were incubated for 8 weeks or 10 days. For maximum growth 
temperature determinations, the temperature gradient was set from 40.5°C to 47.6°C or 
from 29.7°C to 44.6°C for 2 days. The Nixon SMZ-U stereomicroscope (Nikon, Tokyo, 
Japan) was used to determine the limits of growth. Statistical significance of the 
differences between growth temperatures was evaluated with Student’s t test.  

To investigate the freeze-thaw tolerance of the csdA mutant strains and the wild-type 
strain, 1.5 ml of overnight culture of each strain were transferred into a cryovial in 
duplicate and frozen at -20°C. Strains were thawed and re-frozen 15 times at 24-h 
intervals and plated on PCA to determine colony-forming units/ml at 72-h intervals. 
Student’s t test was used to evaluate differences between the survival rate of the wild-type 
strain and the mutants. 
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5 RESULTS 

5.1 Sequence variability of virulence genes (I) 

Investigation of sequence variability of virulence genes inv, virF, and yadA of 18 Y. 
pseudotuberculosis strains revealed the largest sequence variability in yadA and the 
smallest in virF. The amino acid sequences of the inv genes varied at most by 1.5%. The 
two Y. similis strains investigated had a frame-shift mutation due to a 1-bp deletion in the 
inv sequence that caused truncation of the signal peptide from 48 amino acids to 31 amino 
acids. The sequence of virF of the Y. pseudotuberculosis strains did not vary at the amino 
acid level. The nucleotide and amino acid sequences of yadA varied at most 2.2% and 
5.2%, respectively, between the Y. pseudotuberculosis strains. Sequence variability was 
concentrated in the N-terminus of YadA. Thus, most of the nucleotide substitutions altered 
the amino acid. According to amino acid sequences of yadA, the strains could be divided 
into nine groups. 

5.2 Role of two-component systems in cold tolerance (II) 

The relative expression levels of 54 genes predicted to encode TCSs in Y.
pseudotuberculosis IP32953 were determined at 28°C and at 3°C using RT-qPCR. Results 
were normalized to 16S rrn, the expression of which was constant at 3°C and 28°C. The 
expression of 44 genes was significantly higher (p<0.05) at 3°C than at 28°C. TCS 
CheA/CheY encoding genes cheA and cheY had the highest relative expression levels at 
3°C. Their relative expression was 31- and 25-fold higher, respectively, than their 
expression at 28°C. In the majority of the TCSs, all genes of the system had significantly 
higher expression at 3°C than at 28°C. YPTB2099 was the only gene that had a lower 
relative expression level at 3°C than at 28°C, and the UhpB/UhpA TCS was the only one 
from the predicted 24 complete TCSs in the strain IP32953 that had constant expression at 
3°C and 28°C.  

Three insertional mutations were constructed to further study the role of the 
CheA/CheY TCS. The group II intron was inserted in sense orientation in the mutants 
cheA30 and cheY243 and in antisense orientation in the mutant cheA243. At 3°C, growth 
of the mutants cheA243 and cheA30 was impaired, while growth of the mutant cheY243 
was comparable with that of the wild-type strain. In motility tests, all mutants were non-
motile at 3°C and at 22°C, while the wild-type strain had umbrella-type motility at 3°C 
and 22°C. All strains were non-motile at 28°C and at 37°C.  
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5.3 Role of alternative sigma factor E in stress tolerance (III) 

RT-qPCR was used to determine the relative expression levels of rpoE encoding E under 
temperature, pH, osmotic, and ethanol stress. Stably expressed 16S rrn was used in the 
normalization. Relative expression of rpoE was significantly higher under low and high 
temperature, acid and alkaline, osmotic, and ethanol stress in the early logarithmic growth 
phase than expression under optimal growth conditions in the same growth phase. In the 
late logarithmic growth phase, rpoE expression was induced by heat stress. 

The rpoE475 mutant was constructed, and growth was investigated at 3°C, 28°C, 
37°C, and 42°C and at 28°C at pH 5.0, pH 9.0, 3% NaCl, and 3% ethanol. At 3°C, the 
growth of the mutant ceased in the late logarithmic growth phase (Fig. 1A). There was no 
difference in the growth of the complemented mutant and wild-type, and the vector control 
and the mutant. At 28°C, the mutant and wild-type had similar growths (Fig. 1B). At 
37°C, the lag phase of the mutant was longer than that of wild-type (Fig. 1C). Lag phase 
was shortened but growth rate was decreased in the complemented mutant relative to the 
wild-type. The vector control had impaired growth. At 42°C, the mutant did not attain 
OD600 values similar to the wild-type strain (Fig. 1D). The complemented mutant reached 
OD600 values as high as the wild-type, but the growth rate was slower. Growth of the 
vector control was abolished. At pH 5.0, the lag phase of the mutant was longer than the 
lag phase of the wild-type strain (Fig. 2A). The complemented mutant had a similar lag 
phase as the wild-type, but it grew slower than the wild-type, and growth of the vector 
control was impaired. At pH 9.0 and under osmotic stress in 3% NaCl, the mutant and the 
wild-type had comparable growths (Fig. 2B-C). At 3% ethanol, the mutant and the vector 
control did not grow at all (Fig. 2D). The complemented mutant grew at a slower rate than 
the wild-type strain, and OD600 values similar to the wild-type were not attained. OD600 
values and the number of viable bacteria correlated at 28°C and under all stress conditions 
investigated. 

The minimum and maximum growth temperatures of the rpoE475 mutant were 1.2°C 
and 36.1°C, respectively, while those of wild-type were under 0.8°C and 43.5°C, 
respectively. The changes were statistically significant. The minimum growth temperature 
of the complemented mutant was 1.3°C, and that of the vector control 2.5°C. The 
complemented mutant and the vector control had maximum growth temperatures of 
41.3°C and 31.7°C, respectively. 
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Figure 1 Growth curves of the Yersinia pseudotuberculosis IP32953 wild-type strain, 
rpoE475 mutant strain, complemented mutant, and vector control at 3°C (A), 28°C (B), 
37°C (C), and 42°C (D). Measured OD600 values are shown at 20-h intervals (A), at 2-h 
intervals (B), and at 4-h intervals (C and D). Error bars indicate minimum and maximum 
values. Figure derived from Study III. 
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Figure 2 Growth curves of the Yersinia pseudotuberculosis IP32953 wild-type strain, 
rpoE475 mutant strain, complemented mutant, and vector control at pH 5.0 (A), pH 9.0 
(B), 3% NaCl (C), and 3% ethanol (D). Measured OD600 values are shown at 4-h intervals 
(A and D) and at 2-h intervals (B and C). Error bars indicate minimum and maximum 
values. Figure derived from Study III. 
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5.4 Role of DEAD-box RNA helicase CsdA in cold tolerance (IV) 

Relative expression levels of csdA at 3°C and at 28°C in the early logarithmic growth 
phase were determined by RT-qPCR. At 3°C, the relative expression level of csdA was 
9.4-fold higher than at 28°C. Insertional mutants csdA483, csdA1548, and csdA1578 were 
constructed to further investigate the role of CsdA.  The mutant csdA483 had the intron 
targeted in antisense orientation to the DEAD/DEAH-box helicase domain (PF00270), and 
csdA1548 and csdA1578 mutants had the intron targeted to the DbpA RNA binding 
domain (PF03880) in sense and in antisense orientation, respectively. During mutagenesis 
the pYV was lost from csdA483, and despite several attemps, the pYV was not kept in 
csdA483. The other mutants, csdA1548 and csdA1578, did however, retain the pYV.  

Growth of the mutants and the wild-type strain was investigated at 3°C and 28°C. The 
mutant csdA483 did not grow at 3°C, and growth of the mutants csdA1548 and csdA1578 
at 3°C was severely impaired (Fig. 3A). The OD600 values of the wild-type and the 
mutants correlated with the number of viable bacteria. Growth of none of the mutants at 
28°C differed from the wild-type strain (Fig. 3B). When a complementation plasmid 
pBluescript-csdA containing the coding sequence of csdA and its putative promoter was 
introduced into the mutants, growth was better than the growth of the vector controls at 
3°C (Fig. 3C-E). The growth of the vector controls did not differ from the growth of the 
mutants. The complementation plasmid did not affect the growth of the wild-type strain 
(Fig. 3F).  

In the freezing and thawing experiments, the average number of viable cells of the 
wild-type, csdA1548, and csdA1578 strains declined from 108 to 102, and that of the 
csdA483 declined from 108 to 101. However, the changes were not significantly different 
from those of the wild-type strain. In the minimum growth temperature experiment, the 
strains IP32953, csdA1548, and csdA1578 grew over the temperature gradient (1.7-6.3°C), 
meaning that the minimum growth temperatures of these strains are lower than 1.7°C. The 
minimum growth temperature of csdA483 (5.6°C) was significantly higher than that of the 
wild-type strain. In the maximum growth temperature experiment, no significant 
differences emerged between csdA483 (43.7°C), csdA1548 (43.2°C), csdA1578 (43.2°C), 
and the wild-type strain (43.0°C). 
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Figure 3 Growth curves of the Yersinia pseudotuberculosis IP32953 wild-type strain and 
csdA mutants at 3°C (A) and at 28°C (B). Growth of the mutants, complemented mutants, 
vector-only controls, and the wild-type strain at 3°C (C-F). In graphs (A) and (C-F), 
measured values are shown at 20-h intervals, in (B), at 1-h intervals. Error bars indicate 
minimum and maximum values. Figure adapted from Fig. 2 in Study IV. 
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6 DISCUSSION 

6.1 Genetic variability is limited in inv and virF sequences and 
considerable in yadA sequences (I) 

The virulence genes inv and virF are highly similar in the Y. pseudotuberculosis strains 
investigated. Thus, PCR with the commonly used primers targeted to inv (Kageyama et
al., 2002, Kaneko et al., 1995, Nakajima et al., 1992, Thoerner et al., 2003) and virF 
(Harnett et al., 1996, Kageyama et al., 2002, Kaneko et al., 1995, Lambertz & Danielsson-
Tham, 2005, Thoerner et al., 2003, Wren & Tabaqchali, 1990) detect the bacterium well. 
However, PCR using the primers targeted to inv can also detect some Y. similis strains.  
The considerable variability of yadA can hinder detection by PCR, and detection primers 
should be targeted to conserved areas of yadA. In addition, the variability of yadA was 
concentrated at the top of the YadA head. These changes can influence the functional 
properties of YadA. Previous reports have demonstrated that variation of YadA may affect 
the virulence of Y. pseudotuberculosis (Heise & Dersch, 2006). Moreover, effects on the 
immune responses of the host are possible, as established in C. botulinum, where 7% 
variability at the amino acid level of the neurotoxin gene sequence affected antigenic 
properties of botulinum neurotoxin (Lou et al., 2010).  

6.2 Two-component system encoding genes are induced at 3°C 
and two-component system CheA/CheY is essential for optimal 
growth at 3°C (II) 

Relative expression levels of genes encoding 24 complete TCSs and 5 orphan hydrid 
histidine kinases or response regulators of the Y. pseudotuberculosis strain IP32953 were 
determined at 3°C and at 28°C using RT-qPCR. The stable expression of 16S rrn at 3°C 
and 28°C confirmed 16S rrn as a suitable reference gene for studies conducted at low 
temperatures on this pathogen. Most genes had higher relative expression levels at 3°C 
than at 28°C. Several TCS encoding genes have been reported to be induced at low 
temperatures also in E. coli and L. monocytogenes when studied by DNA microarrays 
(Chan et al., 2007, Moen et al., 2009, White-Ziegler et al., 2008). Some TCSs of Yersinia 
have previously been linked to stress tolerance, but the significant induction of TCS 
encoding genes at cold temperatures has not been demonstrated earlier in Y.
pseudotuberculosis.  

Genes encoding chemotaxis proteins CheA and CheY had clearly the highest relative 
expression levels at 3°C. In previous studies on Y. enterocolitica and E. coli, expression of 
cheA and cheY has been induced at low temperatures (Bresolin et al., 2006, Phadtare & 
Inouye, 2004).  The role of CheA and CheY under cold stress was studied further by 
insertional mutagenesis. Growth of the histidine kinase CheA mutants cheA30 and 
cheA243 was impaired at 3°C, while growth of the response regulator mutant cheY243 did 
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not differ from that of the wild-type strain at 3°C. Thus, CheY may not be essential for 
optimal growth at low temperatures or, alternatively, the mutation site near the C-terminus 
of the cheY affected the results. Growth of the mutants and the wild-type strain was similar 
at 28°C. Based on the impaired growth of the cheA mutants at low temperatures, CheA 
probably functions as a sensor for low temperature. Chemotaxis proteins are members of 
the flagellar regulon (Soutourina & Bertin, 2003), and their mutation should result in a 
non-motile phenotype. Expectedly, the cheA and cheY mutants were non-motile at all 
temperatures tested. Also non-motile L. monocytogenes mutants have reduced cold 
tolerance (Markkula et al., 2012, Mattila et al., 2011). Thus, it appears that motility is 
required for optimal growth at low temperatures.  

In six TCSs, expression of only one of the genes encoding the system was induced at 
3°C, indicating possible inactivation of some components and re-established cross-talk 
between non-cognate histidine kinases and response regulators. Approximately one-third 
of the histidine kinases and response regulators of E. coli can phosphorylate or be 
phosphorylated, respectively, by non-cognate response regulators and histidine kinases in
vitro (Yamamoto et al., 2005), but in vivo cross-talk is rare (Groban et al., 2009, 
Podgornaia & Laub, 2013). Cells can utilize cross-regulation, i.e. advantageous cross-talk, 
in situations where combining multiple signals into one response or expanding one signal 
to many responses is beneficial (Laub & Goulian, 2007). Whether cross-regulation is used 
at low temperatures in Y. pseudotuberculosis warrants further investigation. However, the 
significant induction of TCS encoding genes at low temperatures in Y. pseudotuberculosis 
indicates that TCSs are probably members of complex signalling networks that enable the 
growth of this pathogen at low temperatures.  

6.3 E is required for stress tolerance (III) 

This study demonstrated upregulation of rpoE expression by low or high temperature, 
acidic or alkaline pH, increased osmolality, and 3% ethanol by RT-qPCR. The majority of 
the upregulated transcription occurred in the early logarithmic growth phase. Since several 
genes of the E regulon have a role in the synthesis of outer membrane components and 
are especially needed during active cell division (Rhodius et al., 2006), this result was 
expected. In E. coli, E-dependent envelope stress response is induced by several stresses 
disturbing composition or folding of cell envelope proteins such as heat (Erickson & 
Gross, 1989), increased expression of outer membrane proteins (Mecsas et al., 1993), 
ethanol (Raina et al., 1995), or high osmolality (Bianchi & Baneyx, 1999). Thus, the 
induced rpoE expression in Y. pseudotuberculosis by temperature, pH, osmotic, and 
ethanol stress is consistent with E. coli. 

Mutational analysis was used to further investigate the role of E. Impaired or 
abolished growth of the rpoE475 mutant at pH 5.0, at 3°C, at 37°C, at 42°C, and at 3% 
ethanol demonstrated that functional E is essential under several stress conditions in Y.
pseudotuberculosis. In addition, the minimum and maximum growth temperatures of the 
rpoE475 mutant (1.2°C and 36.1°C) were higher and lower, respectively, than those of the 
wild-type strain (<0.8°C and 43.5°C). In Y. enterocolitica, expression of rpoE is induced 
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in Peyer’s patches at the beginning of infection in mice (Heusipp et al., 2003, Young & 
Miller, 1997). In Y. pseudotuberculosis, E has a role in the proper function of the Ysc-
Yop type III secretion system (Carlsson et al., 2007a). In Enterobacteriaceae, several 
genes associated with pathogenesis belong to the E regulon (Rhodius et al., 2006), and E 
is pivotal to survival in the host and full virulence (Raivio, 2005). The significant decrease 
in the maximum growth temperature of the rpoE475 mutant below the mammalian body 
temperature confirms the role of E in virulence in Y. pseudotuberculosis. In addition, the 
essential role of E under stress conditions encountered in the food chain was 
demonstrated. 

6.4 CsdA is essential for growth at low temperatures (IV) 

This study demonstrated that insertion of the intron into csdA either abolished or impaired 
growth at 3°C, indicating that CsdA is essential for growth of Y. pseudotuberculosis 
IP32953 at low temperatures. Growth of the csdA483 was totally suppressed, and 
csdA1548 and csdA1578 had clearly impaired growth at 3°C. Previous reports have 
demonstrated an indispensable role for CsdA in optimal growth at 25°C or temperatures 
below this in E. coli (Awano et al., 2007, Charollais et al., 2004, Jones et al., 1996, Turner 
et al., 2007), and at 10°C in B. cereus (Broussolle et al., 2010, Pandiani et al., 2010).  

In Y. pseudotuberculosis IP32953, CsdA seems not to have a role in freeze-thaw 
tolerance. Also in L. monocytogenes, mutations of RNA helicase genes did not affect 
freeze-thaw tolerance (Azizoglu & Kathariou, 2010, Markkula et al., 2012). The observed 
rise in minimum growth temperature of the csdA483 mutant is also in line with L. 
monocytogenes, where RNA helicase mutants had significantly higher minimum growth 
temperatures than the wild-type strain (Markkula et al., 2012). Thus, csdA in Y. 
pseudotuberculosis seems to be important during continuous growth at cold temperatures. 
In E. coli, another RNA helicase, RhlE, can compensate for the absence of csdA when 
overexpressed in the cells of a plasmid (Awano et al., 2007, Jain, 2008). Hence the main 
role of CsdA at low temperatures is supposed to be due to its helicase function (Awano et
al., 2007, Turner et al., 2007). In E. coli, CsdA participates in mRNA decay at low 
temperatures by destabilizing mRNAs, enabling their degradation by RNases and PNPase 
(Awano et al., 2007, Yamanaka & Inouye, 2001). It has been demonstrated in Y.
enterocolitica that until cold-shock protein mRNAs are degraded after cold shock, cells do 
not continue to grow (Neuhaus et al., 2000). Whether CsdA plays a critical role in mRNA 
degradation at low temperatures in Y. pseudotuberculosis warrants further investigations. 
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6.5 Stress tolerance of Yersinia pseudotuberculosis (II-IV) 

The means that bacteria use to adapt to stressful conditions include changes in their gene 
expression by utilizing specific sigma factors or TCSs and synthesis of specific proteins 
such as enzymes and cold-shock proteins. Y. pseudotuberculosis has a large growth 
temperature range (Bottone et al., 2005, Fredriksson-Ahomaa et al., 2010). It is able to 
survive for long periods in the environment (Jalava et al., 2006, Rimhanen-Finne et al., 
2009), and it tolerates a wide pH range (Bottone et al., 2005) and also high osmolality 
(Fredriksson-Ahomaa et al., 2010). By using TCSs and E, Y. pseudotuberculosis can 
rapidly change its gene expression pattern under stress conditions, and synthesis of 
specific proteins, such as cold-induced helicases, can begin. The observations of Studies 
II-IV indicate that Y. pseudotuberculosis exploits several mechanisms in adapting to 
environmental stress. Stress tolerance mechanisms overlap, as shown by the important role 
of E under several stress conditions, and probably also affect virulence.  However, effects 
of the TCSs, E, and cold-induced proteins on virulence of Y. pseudotuberculosis warrant 
further investigation.  
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7 CONCLUSIONS 

 
1. Genetic variability of inv and virF is limited between different Y. 

pseudotuberculosis strains, and PCR with primers targeted to these genes detect 
the bacterium well. In contrast, yadA varies considerably between different strains, 
and detection primers should target conserved areas of yadA. 

 
2. Expression of several genes encoding TCSs in Y. pseudotuberculosis IP32953 is 

induced at 3°C, and genes encoding TCS CheA/CheY had the highest relative 
expression levels at 3°C. In addition, optimal growth at 3°C requires cheA, and 
both cheA and cheY are needed for motility in this pathogen.  

 
3. Mutational analysis revealed that functional E is essential under acid, cold, heat, 

and ethanol stress in Y. pseudotuberculosis IP32953. Furthermore, mutation of 
rpoE encoding E narrows the growth temperature range of the pathogen. Results 
indicate an important role for E in stress tolerance, and thus, survival of Y. 
pseudotuberculosis IP32953 in the food chain.  

 
4. Mutation of csdA abolished or impaired growth at 3°C. Also the minimum growth 

temperature of the csdA mutant was higher than that of the wild-type strain. CsdA 
is essential for cold tolerance of Y. pseudotuberculosis IP32953. 
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