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ABSTRACT 

Spoilage of modified atmosphere (MAP) or vacuum-packaged meat is often 

caused by psychrotrophic lactic acid bacteria (LAB). LAB contamination 

occurs during the slaughter or processing of meat. During storage LAB 

become the dominant microbiota due to their ability to grow at refrigeration 

temperatures and to resist the microbial inhibitory effect of CO2. Spoilage is a 

complex phenomenon caused by the metabolic activities and interactions of 

the microbes growing in late shelf-life meat which has still not been fully 

explained. In this thesis, the taxonomic status of unknown bacterial groups 

isolated from late shelf-life meat and meat processing environment was 

resolved by the polyphasic approach. Five isolates from a broiler processing 

plant represented a novel Enterococcus species which phylogenetic 

analyses showed to be located within the Enterococcus avium group. The 

name Enterococcus viikkiensis was proposed for this species. In addition to 

enterococcal studies, the taxonomy of the Leuconostoc gelidum group was 

revised. Twenty isolates from packaged meat were shown to represent a 

novel subspecies within L. gelidum, for which the name Leuconostoc gelidum 

subsp. aenigmaticum was proposed. The novel subspecies was closely 

related to both L. gelidum and Leuconostoc gasicomitatum. Phylogenetic 

analyses and DNA-DNA reassociation studies led to the reclassification of 

Leuconostoc gelidum and Leuconostoc gasicomitatum as Leuconostoc 

gelidum subsp. gelidum and Leuconostoc gelidum subsp. gasicomitatum. In 

the third part of the thesis, Lactococcus piscium was shown to form a 

significant part of the LAB population in a variety of MAP meat in late shelf-

life. This formerly neglected species in meat spoilage studies grew together 

with leuconostocs and contributed to spoilage when inoculated into pork. 

Numerical analysis of ribopatterns, and/or multilocus sequence typing of 

several housekeeping genes were shown to differentiate species/subspecies 

of enterococci and lactococci well. Finally, a novel MLST scheme was 

developed and the population structure within 252 strains of the spoilage 

bacterium Leuconostoc gelidum subsp. gasicomitatum from meat and 

vegetable sources was investigated. Indication of niche specificity was 

observed, as well as a very low level of genetic material exchange within the 

three subpopulations. 



4 

ACKNOWLEDGEMENTS 

This study was performed at the Department of Food Hygiene and 

Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 

and at the Finnish Centre of Excellence in Microbial Food Safety Research, 

Academy of Finland. The Finnish Veterinary Foundation, the Finnish Food 

Research Foundation, and the Finnish Graduate School on Applied 

Bioscience are acknowledged for funding this work.  

My supervisors Professor Johanna Björkroth and PhD Per Johansson are 

greatly acknowledged for their support during all these years. I am grateful 

for Professor Johanna Björkroth for accepting me in her group and for 

making this work possible. I thank her for being such a fair boss, for 

understanding my ever-changing life situations, and for inspiring and 

believing in me throughout this work. I want to thank PhD Per Johansson for 

his everlasting patience, readiness to help, and enthusiasm for science. I 

have learnt so much from him.   

I thank Professor Hannu Korkeala for creating a great atmosphere and 

high-class science at the department. Professor Mirja Salkinoja-Salonen and 

docent Terhi Ali-Vehmas are thanked for introducing me into the world of 

science when I was a clueless second year veterinary student. Professors 

Danilo Ercolini and Georg Nychas are acknowledged for reviewing this 

thesis, and Stephen Skate for revising the English language. I thank Petri 

Auvinen and Lars Paulin for collaboration.  

I want to thank the entire personnel of the department, especially the JB 

group. I don´t think I am ever going to have so much fun at work and still 

work so hard. Erja and Henna are acknowledged for their great technical 

assistance, for teaching me how to behave in the lab, and for their friendship. 

Jenni, Elina J., Elina S., Timo, Georg, and Anna are thanked for working 

closely with me in the JB group, helping me grow as a scientist, and for their 

friendship. I thank Esa, Erika, Rauha, Kika, Maria, Suski, Johanna S., Heimo, 

Anki, Astrid, and Sara for all the discussions, laughs, and pikkujoulu-

preparations. The teaching staff at the department is thanked for co-

operation during the two semesters I worked as a university lecturer.   

I also want to thank my fabulous family, Hannu, Heikki, Tuomas, and 

Jenny, for support; I love you guys. Special thanks go to Tuomas for creating 

the cover illustration (among several other great pieces of art) at the age of 

four. Heikki is thanked for helping me stay fit by competing with me in various 

sports; one day you will win, son. Jenny is thanked for her great sense of 

humor and for making me laugh daily. My sisters and brothers, Liisa, Juha, 

Joonas, and Johanna, as well as my best friend Minna are thanked for being 

there for me. This thesis is dedicated to my dear mother Sinikka Koskinen, 

MD, docent, and a mother of five; thanks for showing me the way mom. 



 

5 

CONTENTS 

Abstract .............................................................................................................. 3 

Acknowledgements ............................................................................................ 4 

Contents ............................................................................................................. 5 

List of original publications.................................................................................. 7 

Abbreviations ...................................................................................................... 8 

1 Introduction ................................................................................................ 9 

2 Review of the literature ............................................................................ 11 

2.1 Microbial taxonomy and prokaryotic species concept ...................... 11 

2.2 Taxonomy and habitats of coccal LAB from genera 
Enterococcus, Lactococcus and Leuconostoc.............................................. 12 

2.2.1 Genus Enterococcus ..................................................................... 13 

2.2.2 Genus Lactococcus ...................................................................... 13 

2.2.3 Genus Leuconostoc ...................................................................... 14 

2.3 LAB in meat and the meat processing environment ........................ 14 

2.3.1 LAB species in meat and meat products ....................................... 14 

2.3.2 LAB in the meat processing environment ..................................... 16 

2.3.3 LAB spoilage of meat .................................................................... 17 

2.3.4 The dual role of LAB in meat......................................................... 20 

2.3.5 Interactions of LAB during growth in meat .................................... 20 

2.4 Methods for identification, characterisation, and population 
studies of LAB .............................................................................................. 21 

2.4.1 Phenotypic methods ..................................................................... 21 

2.4.2 Genotypic methods .................................................................... 23 

2.4.3 Gene-based approaches .............................................................. 23 

2.4.4 MLST ......................................................................................... 24 



6 

2.4.5 Whole genome sequencing .......................................................... 26 

2.4.6 High-throughput sequencing approaches .................................. 26 

3 AIMS OF THE STUDY ............................................................................. 29 

4 MATERIALS AND METHODS ................................................................. 30 

4.1 Bacterial strains and culturing (I, II, III, IV) ....................................... 30 

4.2 Morphology and phenotypic tests (I, II, III) ....................................... 31 

4.3 Isolation of DNA (I, II, III, IV) ............................................................ 32 

4.4 Ribotyping (I, II, III) .......................................................................... 32 

4.5 Sequence analysis of 16S rRNA, atpA, pheS, and rpoA genes 
(I, II, III) 32 

4.6 Determination of the G+C content and DNA-DNA 
reassociation (I, III) ....................................................................................... 34 

4.7 MLST (IV) ........................................................................................ 34 

4.8 Inoculation experiments (II) ............................................................. 35 

5 RESULTS AND DISCUSSION ................................................................. 36 

5.1 Identification and characterisation of novel bacterial groups 
from meat and the meat processing environment (I, III) ............................... 36 

5.2 Methods for identification of coccal LAB from meat (I, II) ................. 40 

5.3 The role of Lactococcus piscium in MAP meat (II) ........................... 42 

5.4 Genetic diversity of Leuconostoc gelidum subsp. 
gasicomitatum strains from meat and vegetable sources (IV) ...................... 43 

6 CONCLUSIONS ....................................................................................... 46 

References ....................................................................................................... 47 



 

7 

LIST OF ORIGINAL PUBLICATIONS 

This thesis is based on the following publications: 

 

I Rahkila, R., Johansson, P., Säde, E., and Björkroth, J. (2011). 

Identification of enterococci from broiler products and a broiler 

processing plant and description of Enterococcus viikkiensis sp. 

nov. Applied and Environmental Microbiology 77(4): 1196-203. 

 

II Rahkila, R., Nieminen, T., Johansson, P., Säde, E., and 

Björkroth, J. (2012). Characterization and evaluation of the 

spoilage potential of Lactococcus piscium isolates from modified 

atmosphere packaged meat. International Journal of Food 

Microbiology 156(1): 50-9. 

 

III Rahkila, R., De Bruyne, K., Johansson, P., Vandamme, P., and 

Björkroth, J. (2014). Reclassification of Leuconostoc 

gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum 

comb. nov., description of Leuconostoc gelidum subsp. 

aenigmaticum subsp. nov., designation of Leuconostoc gelidum 

subsp. gelidum subsp. nov., and emended description of 

Leuconostoc gelidum. International Journal of Systematic and 

Evolutionary Microbiology 64(Pt 4): 1290-5. 

 

IV Rahkila, R., Johansson, P., Säde, E., Paulin, L., Auvinen, P., 

and Björkroth, J. (2015). Multilocus sequence typing of 

Leuconostoc gelidum subsp. gasicomitatum, a psychrotrophic 

lactic acid bacterium causing spoilage of packaged perishable 

foods. Applied and Environmental Microbiology 81(7): 2474-80. 

 

These publications have been reprinted with the kind permission of their 

copyright holders: American Society for Microbiology, the Society for General 

Microbiology, and Elsevier. 



8 

ABBREVIATIONS 

DNA Deoxyribonucleic acid 

HTS High-throughput sequencing 

LAB Lactic acid bacteria 

MAP Modified atmosphere packaged 

MLSA Multilocus sequence analysis 

MLST Multilocus sequence typing 

MRS de Man Rogosa Sharpe 

PCR Polymerase chain reaction 

PFGE Pulsed-field gel electrophoresis 

RFLP Restriction fragment length polymorphism 

RNA Ribonucleic acid 

T-RFLP Terminal restriction fragment length polymorphism 

UPGMA Unweighted Pair Group Method with Arithmetic Mean 

WGS Whole genome sequencing



 

9 

1 INTRODUCTION 

Meat is perishable, contains a lot of nutrients and is thus an excellent 

growth medium for bacteria. Bacterial growth results in spoilage due to the 

accumulation of metabolites causing off-odours, off-flavours and undesirable 

appearance. The economic impact of meat spoilage is enormous, and thus 

prevention of microbial growth is of major interest to the meat industry. Good 

hygienic practices during slaughter and processing, and sanitation 

procedures at the plants are applied to reduce the level of initial bacterial 

contamination. Techniques such as salting, smoking and drying have been 

used for centuries for meat preservation. Cold storage and modified 

atmosphere or vacuum packaging are modern approaches that meet the 

demands of today’s consumers for fresh meat, but also the requirements of 

the industry for the extended shelf-life for meat.  

The microbial ecology of meat spoilage bacteria is complex and many 

species or strains can contribute to spoilage. Bacterial contamination occurs 

during slaughter, cutting and processing at a meat plant. During cold storage, 

however, only a minor part of the initial microbiota is able to survive and grow 

and eventually cause spoilage. Interactions between different organisms can 

also affect the growth and spoilage activities of the whole bacterial 

community. Thus, the first step in understanding spoilage is to characterise 

the microbiota associated with meat and the meat processing environment. 

Taxonomy is a discipline associated with the nomenclature and classification 

of novel organisms. After species level identification of the organisms and 

naming the novel species, the relevance of each bacterial group in spoilage 

can be evaluated. Inoculation studies and measurements of metabolic 

compounds associated with spoilage are useful in evaluating the spoilage 

potential of strains isolated from late shelf-life meat. Reliable and 

reproducible culture-based and culture-independent methods are needed in 

detecting, identifying and characterising isolates as well as whole microbial 

populations. Investigation of the population structure of the major spoilage 

organisms can shed light on the evolution of these organisms and the 

possible existence of genotypes with high spoilage potential in certain food 

matrixes or high competitiveness in the production environment.  

Refrigeration temperatures and packaging under a low-oxygen or high 

carbon dioxide atmosphere favours the growth of psychrotrophic lactic acid 

bacteria (LAB) (Nychas et al., 2008). LAB are sometimes considered 

beneficial in foods and can be used as starters producing desirable flavour 

and texture, or protective cultures preventing the growth of pathogenic or 

fast-growing spoilage bacteria (Fadda et al., 2010). However, many LAB 

have been recognized as major spoilage organisms of packaged meat and 

meat products.  
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In previous studies by our group, we have shown that ribotyping is a 

valuable tool in species-level identification within many genera of LAB (Koort 

et al., 2006, Lyhs et al., 2004, Björkroth et al., 1996a). A novel Leuconostoc 

species, L. gasicomitatum was described and shown to cause spoilage of a 

variety of MAP meat products (Vihavainen and Björkroth, 2007, Björkroth et 

al., 2000). A total of 384 L. gasicomitatum isolates from meat and vegetable 

sources were characterised by pulsed field electrophoresis (PFGE) typing 

and major meat- and vegetable-associated genotypes were identified 

(Vihavainen and Björkroth, 2009). During investigations of LAB in meat and 

at meat processing plants, several groups of bacteria were isolated that 

possessed similar ribopatterns, but remained unidentified in the numerical 

analysis of ribopatterns in comparison with LAB type and reference strains.  

The purpose of the thesis was to resolve the taxonomic status of the 

unknown bacterial isolates and to produce novel data on the LAB associated 

with the manufacture of meat products. The aim was also to evaluate the 

usefulness of numerical analysis of ribopatterns, and/or multilocus sequence 

analysis of several housekeeping genes in the species/subspecies level 

identification of enterococci and lactococci. The fully sequenced genome of 

the type strain L. gasicomitatum LMG 18811 was utilised to establish a 

multilocus sequence typing (MLST) scheme for the species and the MLST 

data was used to evaluate the population structure of L. gasicomitatum. 
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2 REVIEW OF THE LITERATURE 

2.1 MICROBIAL TAXONOMY AND PROKARYOTIC 
SPECIES CONCEPT 

Taxonomy is a discipline that encompasses the description, identification, 

nomenclature and classification of organisms. Taxonomy provides a 

framework for the scientific community and society to understand and share 

knowledge about living organisms. The history of microbial taxonomy began 

in the late 18th century, when microscopy and the ability to cultivate micro-

organisms enabled classification based first on cell morphology and later on 

physiological characteristics (Rossello-Mora and Amann 2001). Since then, 

the field has continued to develop concurrently with technological and 

biological innovations. The discovery of DNA in the mid-20th century finally 

led to the idea that microbes could be classified based on their genomic 

contents (Rossello-Mora and Amann 2001). The overall genomic base 

composition (G+C %) and DNA-DNA hybridisation became the golden 

standard in microbial taxonomy already in the 1970s, followed by rRNA 

sequence analysis (Brenner et al., 1969, Fox et al., 1977). The development 

of next generation sequencing technologies in the 21st century has provided 

scientists with the possibility to sequence the whole genome of a microbe at 

lower costs and in less time.  

The classification system, as well as the binomial nomenclature founded 

by Linnaeus, was adapted to the prokaryotic taxonomy from the eukaryotic 

world. In microbiology, however, the concept of a species is still not clear. A 

common definition describes bacterial species as “a group of strains that 

show a high degree of overall similarity and differ considerably from related 

strain groups with respect to many independent characteristics” (Colwell et 

al., 1995). Horizontal gene transfers pose a major challenge for prokaryotic 

taxonomy and have led some scientists to doubt whether such a thing as 

bacterial species actually exists (Doolittle and Papke 2006). The current 

recommendation for bacterial species circumscription by ad hoc committee 

for the re-evaluation of the species definition in bacteriology applies a 

polyphasic approach and defines a species as a group of strains with more 

than 97% rRNA sequence similarity (nowadays 98.7% similarity; 

Stackebrandt and Ebers 2006) and approximately 70% or greater DNA-DNA 

relatedness and/or 5C or less Tm, and can be differentiated from the 

closest phylogenetic relatives by one or more phenotypic characteristic 

(Wayne et al., 1987). This pragmatic definition is universally applicable and 

widely accepted by microbiologists as the basis for classification in spite of 

the commonly acknowledged pitfalls of the methods (Rossello-Mora, 2012). 

In recent years, the quest for methods that could substitute the outdated 

DNA-DNA hybridisation has been successful. Multilocus sequence analysis 
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(MLSA), which uses several housekeeping genes as molecular markers, 

provides substantially higher resolution than 16S rRNA gene sequence 

analysis and is easily applicable (Martens et al., 2008). The average 

nucleotide identity (ANI) of the shared genes between two strains is the 

parameter that will most probably replace DNA-DNA hybridisation in the near 

future and hopefully advance the current species definition for prokaryotes 

(Rossello-Mora, 2012, Konstantinidis and Tiedje, 2004).   

2.2 TAXONOMY AND HABITATS OF COCCAL LAB 
FROM GENERA ENTEROCOCCUS, LACTOCOCCUS 
AND LEUCONOSTOC  

Enterococci, lactococci and leuconostocs are all Gram-positive, catalase-
negative, facultatively anaerobic, coccal LAB. Phylogenetically LAB belong to 
class Bacilli and order Lactobacillales of phylum Firmicutes. Fig. 1 shows the 
phylogenetic position of the genera Enterococcus, Lactococcus and 
Leuconostoc within LAB. All LAB exhibit DNA G+C content of less than 50 
mol% and produce lactate as the main product of carbohydrate metabolism. 
In addition to the genera Enterococcus, Lactococcus and Leuconostoc, the 
LAB of importance in foods belong to the genera Carnobacterium, 
Lactobacillus, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, 
Vagococcus and Weissella (Doyle et al., 2013).  

 

Fig. 1. The position of genera Enterococcus, Lactococcus and Leuconostoc in the 
phylogenetic tree of lactic acid bacteria based on 16S rRNA gene sequences. (adapted from 
Holzapfel et al., 2001). 
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2.2.1 GENUS ENTEROCOCCUS 

The genus was described in 1984, when Schleifer and Kilpper-Bältz (1984) 

proposed that the species Streptococcus faecalis and Streptococcus faecium 

should be transferred to a novel genus Enterococcus. Enterococci are 

actually phylogenetically more closely related to the genera Vagococcus, 

Carnobacterium and Tetragenococcus than species presently comprising the 

genus Streptococcus (Fig. 1). During the past ten years, the genus has 

expanded and 54 Enterococcus species are currently recognised (Euzeby, 

1997; latest full update 7 November 2014). Based on 16S rRNA gene 

sequence analysis, several phylogenetic groups have been distinguished 

(Enterococcus faecium, Enterococcus faecalis, Enterococcus avium, 

Enterococcus casseliflavus, Enterococcus dispar, Enterococcus 

saccharolyticus and Enterococcus cecorum species groups) (Klein, 2003, 

Williams et al., 1991). 

E. faecium and E. faecalis are the most frequently found intestinal 

enterococci in humans and many animals, and these species are notorious 

nosocomial pathogens with both intrinsic and acquired resistance to 

antibiotics (Devriese et al., 2006). Some species, such as E. mundtii and E. 

casseliflavus, are clearly plant-associated, whereas the habitat of the species 

in the E. avium group is largely unknown (Devriese et al., 2006, Klein, 2003). 

Despite their pathogenic features, enterococci are also present in artisanally 

fermented foods, as well as used as probiotics (Moreno et al., 2006). 

2.2.2 GENUS LACTOCOCCUS 

Schleifer et al., (1985) continued revision of the taxonomy of catalase-

negative, facultatively anaerobic, Gram-positive cocci by proposing that the 

lactic streptococci of Lancefield group N should be classified in a new genus, 

Lactococcus. This genus currently comprises two phylogenetic groups: 

species Lactococcus lactis (L. lactis subsp. cremoris, L. lactis subsp. 

hordniae, L. lactis subsp. lactis, and L. lactis subsp. tructae), Lactococcus 

taiwanensis, Lactococcus fujiensis, Lactococcus formosensis and 

Lactococcus garvieae are clearly separated from the closely related species 

Lactococcus piscium, Lactococcus plantarum, Lactococcus raffinolactis and 

Lactococcus chungangensis (Euzeby, 1997). Lactococci belong to the family 

Streptococaceae and are closely related to species in the genus 

Streptococcus (Fig. 1). 

Species of the genus Lactococcus are commonly present in various 

fermented foods, the dairy environment and in plant and animal sources, but 

usually not in faecal material or soil (Teuber and Geis, 2006). Plant material 

is most probably the original habitat of lactococci and the adaptation from a 

plant to a dairy environment is a more recent event (Siezen et al., 2008). L. 

lactis has been used for decades as a model organism for gram-positive 

bacteria and has thus been extensively studied, whereas the other species of 

the genus have received less attention. L. piscium was described by Williams 
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et al., (1990) more than 20 years ago, but the main habitat of the species has 

remained unknown. 

2.2.3 GENUS LEUCONOSTOC 

The type species of the genus, Leuconostoc mesenteroides, was among the 

first bacteria described (van Tieghem, 1878). After several taxonomic 

revisions (Endo & Okada 2008, Dicks et al., 1995, Collins et al., 1993), the 

genus Leuconostoc currently comprises 14 species (Euzeby, 1997). Based 

on 16S rRNA gene-based phylogeny, the species in the genus are divided 

into three evolutionary branches: L. mesenteroides, Leuconostoc lactis and 

Leuconostoc gelidum species groups. Leuconostoc fallax is phylogenetically 

distant from the other leuconostocs. The most closely related genera are 

Fructobacillus, Weissella and Oenococcus, which all belong to the family 

Leuconostocaceae (Fig. 1).  

Leuconostocs are commonly found in decaying plant material, which is 

probably their natural habitat, as well as in meat, dairy foods and in various 

fermented foods (Björkroth and Holzapfel 2006). Except Leuconostoc 

kimchii, species in the L. gelidum group can grow at chilled temperatures and 

thus thrive in cold-stored foods and eventually cause spoilage (Björkroth and 

Holzapfel 2006). Leuconostocs can occasionally cause infections in 

immunocompromised humans (Deng et al 2012). 

2.3 LAB IN MEAT AND THE MEAT PROCESSING 
ENVIRONMENT 

LAB are nutritionally fastidious and require external sources of several amino 

acids and vitamins. Meat is rich in nutrients and water, has near-neutral pH 

and thus provides an excellent medium for the growth of LAB and other 

bacteria. Meat processing plants, however, are harsh niches, where only few 

bacterial species are able to survive.    

2.3.1 LAB SPECIES IN MEAT AND MEAT PRODUCTS 

The initial microbial contamination of meat occurs at the slaughterhouse and 

meat processing plant. LAB often form only a minor part of the initial 

microbiota of fresh meat, whereas bacteria from the genera Acinetobacter, 

Brochothrix, Flavobacterium, Pseudomonas, Psychrobacter, Moraxella, 

Staphlycoccus, Micrococcus and family Enterobacteriaceae usually dominate 

(Chaillou et al., 2014, Doulgeraki et al., 2012). Microbiota originating from the 

skin and gastro-intestinal tract of slaughter animals (species belonging to 

genera Lactobacillus, Enterococcus, Clostridium, Corynebacterium, 

Propionibacterium, and Streptococcus) were found to be less common in 

fresh meat than microbes originating from environmental reservoirs (species 
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belonging to the genera Acinetobacter, Pseudomonas, Vagococcus, 

Carnobacterium, Lactobacillus, Leuconostoc, and Brochothrix) (Chaillou et 

al., 2014). The latter group mainly consisted of psychrotrophic bacteria, 

whereas the bacteria originating from animals are mesophils. 

During storage, the microbial community in meat undergoes a selection 

process and only a small fraction of the initial microbiota survives until the 

end of the shelf-life, even though the number of microbes rises exponentially. 

The bacterial richness in meat and meat products was shown to decrease 

circa 10-fold when fresh and spoiled samples were studied by 

pyrosequencing (Chaillou et al., 2014). Species composition of the 

microbiota at the end of the shelf-life/at the time of spoilage depends on the 

composition of the initial contamination and the storage conditions, primarily 

storage temperature and the atmosphere in the package. Vacuum and 

modified atmosphere packaging and cold-storage favours the dominance of 

psychrotrophic LAB, and occasionally Brochothrix thermospacta and 

clostridia, whereas aerobic storage favours faster-growing, gram-negative 

organisms such as Pseudomonas spp. (Chaillou et al., 2014, Nychas and 

Skandamis 2005). In meat products, the shift in the microbiota from mainly 

Gram-negative to Gram-positive bacteria, mostly LAB, can occur after 

grinding and the addition of additives such as salt and nitrite (Samelis et al., 

1998).  

LAB from the genera Carnobacterium, Enterococcus, Lactobacillus, 

Leuconostoc and Weissella prevail in fresh meat and meat products, 

whereas, until recently, lactococci have only rarely been detected (Björkroth 

et al., 2005, Champomier-Verges et al., 2001). Table 1 shows the LAB 

species associated with packaged, late shelf-life meat. Many psychrotrophic 

LAB species have been overlooked in spoilage studies due to 

implementation of mesophilic plate counting methods or the growth medium 

(Pothakos et al., 2012, Ercolini et al., 2009). Recently, studies implementing 

novel high-throughput sequencing as well as psychrotrophic plate counting 

methods have shown the high prevalence of LAB species such as 

Leuconostoc gelidum and Lactococcus piscium in late shelf-life meat and 

meat products (Pothakos et al., 2014a, 2014b).   

Within the genus Leuconostoc, L. carnosum and L. mesenteroides, in 

addition to L. gelidum subsp. gasicomitatum and gelidum, are common 

organisms in beef, pork, poultry and minced meat, as well as in processed 

meat products at the end of their shelf-life (Pothakos et al., 2014b, Nieminen 

et al., 2011, Doulgeraki et al., 2010, Schirmer et al., 2009, Yang et al., 2009, 

Sakala et al., 2002b, Samelis et al., 2000). L. gelidum subsp. gasicomitatum 

was originally isolated from spoiled, marinated broiler fillet (Björkroth et al., 

2000) and has since been detected as the dominant spoilage organism in 

MAP beefsteaks (Vihavainen and Björkroth, 2007), as well as in cooked 

meat products and several vegetable products (Pothakos et al., 2014a, 

2014b, Vihavainen et al., 2008). L. gelidum subsp. gasicomitatum is able to 

respire and thus improve growth and stress resistance in high-oxygen MAP 
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meats (Jääskeläinen et al., 2013, Johansson et al., 2011). The ability of 

Leuconostoc species in the L. gelidum group to grow at chilled temperatures 

partly explains their competitiveness in cold-stored meats (Björkroth and 

Holzapfel, 2006). 

Lactococci, more precisely species L. piscium and L. raffinolactis, have 

increasingly been detected in late shelf-life meat (Xiao et al., 2013, Nieminen 

et al., 2012, 2011, Penacchia et al., 2011, Jiang et al., 2010, Sakala et al., 

2002a, Barakat et al., 2000). L. raffinolactis and L. piscium formed part of the 

predominant microbiota in cooked, MAP poultry and vacuum packaged beef, 

respectively (Sakala et al., 2002a, Barakat et al., 2000). L. piscium also 

dominated in late shelf-life of a raw meat product in Belgium (Pothakos et al., 

2014a). Lactococci may have earlier been overlooked in meat due to the use 

of mesophilic plating techniques and lack of identification methods, and the 

spoilage potential of these bacteria is still scarcely known. 

Carnobacteria and lactobacilli, mostly the species Carnobacterium 

piscicola, Carnobacterium maltaromaticum, Carnobacterium divergens, 

Lactobacillus sakei, Lactobacillus algidus and Lactobacillus curvatus, are 

often found within the predominant microbiota of packaged meat at the end 

of shelf-life (Liang et al., 2012, Nieminen et al., 2012, Ercolini et al., 2011, 

2009, Doulgeraki et al., 2010, Jiang et al., 2010, Schirmer et al., 2009, Yost 

and Nattress, 2002). Lactobacilli and leuconostocs are considered highly 

competitive in meat, whereas carnobacteria are less tolerant to low pH and 

can be overgrown during storage (Yang et al., 2009, Leisner et al., 2007). C. 

divergens, however, has been detected as the dominant organism in 

aerobically stored, vacuum-packaged, and antimicrobially packaged beef at 

all stages of storage (Ercolini et al., 2011, Penacchia et al., 2011). Weissella 

viridescens is often associated with other LAB such as lactobacilli and 

leuconostocs when growing in late shelf-life meat (Han et al., 2011, Samelis 

et al., 2000).  

Enterococci are commonly found in fresh meat at the beginning of 

storage. This may either indicate hygiene problems in meat slaughtering and 

processing or concern due to the antibiotic resistance of these organisms 

(Hammerum, 2012, Moreno et al., 2006). During storage, enterococci are 

usually overgrown by other, more competitive bacteria and are thus not very 

likely to cause spoilage (Björkroth et al., 2005). However, there are few 

reports on the association of enterococci, notably E. faecalis and E. faecium, 

with the spoilage of meat products (Vasilopoulos et al., 2008, Foulquié-

Moreno et al., 2006).  

2.3.2 LAB IN THE MEAT PROCESSING ENVIRONMENT 

Since fresh meat from a healthy animal is sterile, LAB contamination of meat 

occurs at the slaughterhouse and the meat processing plant. It is currently 

unknown how LAB enter the plant: animal hides, silage, airflows and 

employers are suggested to be possible carriers (De Filippis et al., 2013, 
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Vihavainen et al., 2007, Björkroth and Korkeala 1997). Psychrotrophic 

spoilage LAB such as leuconostocs or Lactococcus piscium are not common 

habitants of the gastro-intestinal tract of warm-blooded animals and are thus 

likely to originate from environmental reservoirs. Leuconostoc contamination 

in a poultry processing plant was shown to spread via the air, whereas these 

spoilage bacteria were not detected in the skin or feathers of the birds 

entering the plant (Vihavainen et al., 2007). In a vegetable production 

environment, spoilage-causing leuconostocs were isolated from the air of the 

plant and few harbourage sites in the premises prior to production (Pothakos 

et al., 2014c). Contamination was estimated to mostly originate from the 

constant introduction of these organisms into the plant.   

After entering the chilled processing environment, LAB are able to survive 

and spread via surfaces, air or personnel (Vasilopoulos et al., 2010, 

Vihavainen et al., 2007, Samelis et al., 1998, Björkroth and Korkeala 1997). 

The microbiota of a meat processing environment is highly complex, with 

LAB representing only a minor element (De Filippis et al., 2013, Hultman et 

al., 2015). LAB can, however, prevail in slicing or grinding and packaging 

devices, and contaminate meat and meat products during processing 

(Vasilopoulos et al., 2010). LAB, with the exception of enterococci, are 

generally not very resistant to heat and disinfection, and survival of these 

microbes in a harsh processing plant environment evokes many questions. 

The ability of spoilage strains to adhere to surfaces and form biofilms may 

contribute to their survival (Giaouris et al., 2014, Johansson et al., 2011). 

Within L. gelidum subsp. gasicomitatum, the ability to attach to surfaces was 

shown to vary remarkably among the strains studied (Pothakos et al., 2015). 

Good hygiene practices are essential in meat processing plants to reduce 

the amounts of LAB and other spoilage organisms, and thus minimise the 

risk of early spoilage. 

2.3.3 LAB SPOILAGE OF MEAT 

Spoilage is defined as the deterioration of original nutritional value, texture, 

and/or flavour of food that makes it unfit for human consumption. Microbial 

activity, as well as autolytic enzymatic reactions and lipid oxidation, can 

contribute to the spoilage of food, although microbial action is considered to 

precede the latter. Only the microbiota that survives until the end of storage 

is considered as the main cause of spoilage and is called ephemeral/specific 

spoilage organisms (E(S)SO) (Nychas et al., 2008). The spoilage process, 

however, consists of complex interactions between bacteria, the food and the 

environment, and is not fully elucidated. 

Spoilage potential is the quantitative ability of a micro-organism to 

produce metabolites that are associated with the spoilage of a particular 

product (Ellis and Goodacre, 2006). Spoilage potential can vary within strains 

representing the same species, which seems to be the case for e.g. L. 

piscium (Pothakos et al., 2014d). However, within species such as L. 
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gelidum and Brochothrix thermospacta, all strains can be considered as 

spoilage organisms. LAB cause food spoilage when extrinsic and/or intrinsic 

factors prevent the growth of fast-growing, gram-negative bacteria. In 

addition to vacuum and modified atmosphere packaging, low pH and low 

temperature, as well as the addition of sugar, salt or nitrite, are factors that 

the food industry uses to extend the shelf-life of food and at the same time 

these factors favour the growth of LAB. 

The LAB species associated with spoilage hitherto belong to the genera 

Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, 

and Weissella (Table 1.). LAB spoilage of meat and meat products is often 

associated with off-odours and flavours that are described as sour, acid, 

buttery or cheesy (Schirmer et al., 2009, Diez et al., 2008, Vihavainen and 

Björkroth, 2007, Holley et al., 2004, Susiluoto et al., 2003, Björkroth et al., 

1998). These unpleasant changes are the result of the metabolism of SSO 

when utilising the substrates available in meat. The metabolic activities of 

bacteria are species or even strain specific (Ercolini et al., 2011, Vihavainen 

and Björkroth, 2007). 

LAB can utilise at least glucose, glucose-6-P, ribose, lactate, nucleosides 

and amino acids (Casaburi et al., 2015, Jääskeläinen et al., 2014). Some 

spoilage LAB, such as leuconostocs, Weissella spp. and Carnobacteria spp., 

are obligatory heterofermentative producing lactic acid, acetic acid, CO2 and 

ethanol. Leuconostocs also co-metabolise citrate and carbohydrate to 

diacetyl, CO2 and acetoin under reducing conditions. L. gelidum subsp. 

gasicomitatum produced significant amounts of diacetyl and acetoin when 

growing on citrate-including media with inosine or ribose, whereas no 

production of these buttery odour compounds was detected with glucose 

(Jääskeläinen et al., 2014). L. gelidum subsp. gasicomitatum is able to 

respire in the presence of exogenous heme and oxygen, and thus increase 

the growth and production of acetoin and diacetyl (Jääskeläinen et al., 2013). 

Facultatively heterofermentative LAB, such as Lactobacillus sakei, produce 

lactate from glucose, but are also able to utilise pentoses via the 

phosphoketolase pathway. Lactococci and enterococci are considered to 

mainly ferment glucose to lactic acid via the Embden-Meyerhof pathway. 

Most lactococci, however, possess genes for the phosphoketolase pathway 

in their genomes (Andrevskaya et al. 2015). Production of acetic acid, 

butanoic acid, acetoin and diacetyl are often associated with sensorial 

changes of meat (Casaburi et al., 2015, Jääskeläinen et al., 2013, Ercolini et 

al., 2011, Vihavainen and Björkroth, 2007). The odour of acetoin and diacetyl 

is described as buttery creamy, whereas acetic acid and butanoic acid give 

meat an acetic aroma, respectively (Casaburi et al., 2015).    

LAB, especially lactobacilli and leuconostocs, can also cause 

discoloration such as greening of meat, swelling of the package due to gas 

(mostly CO2) production, or slime formation, especially in cooked meat 

products (Vihavainen and Björkroth, 2007, Björkroth et al., 2000, Samelis et  
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Table 1. LAB species associated with packaged, late shelf-life meat. 

Species  Type of meat Reference 

Carnobacterium  

divergens/ maltaromaticum 

VP/MAP beef 

VP beef 

MAP minced meat 

Marinated pork 

Cooked ham 

Ercolini et al. 2011 

Penacchia et al. 2011 

Nieminen et al. 2011 

Schirmer et al. 2009 

Vasilopoulos et al. 2008 

Enterococcus faecalis Cooked ham Vasilopoulos et al. 2008 

Lactobacillus algidus Fresh meat products 

MAP minced meat 

Marinated pork 

VP beef 

Pothakos et al. 2014a 

Nieminen et al. 2011 

Schirmer et al. 2009 

Kato et al. 2000 

Lactobacillus fuchuensis Fresh meat products 

VP beef 

Pothakos et al. 2014a 

Sakala et al. 2002b 

Lactobacillus curvatus/sakei MAP minced beef 

VP beef 

Marinated pork 

 

Doulgeraki et al. 2010 

Ercolini et al. 2011 

Schirmer et al. 2009 

Lactococcus spp. VP beef 

MAP minced meat 

Ercolini et al. 2011 

Nieminen et al. 2011 

Lactococcus piscium Raw meat products 

VP beef 

Pothakos et al. 2014a 

Sakala et al. 2002a 

Leuconostoc spp. MAP beef Doulgeraki et al. 2010 

Leuconostoc carnosum Cooked meat products 

Marinated pork 

Cooked ham 

Cooked ham 

Cooked ham 

 

Pothakos et al. 2014a 

Schirmer et al. 2009 

Vasilopoulos et al. 2008 

Samelis et al. 2006 

Björkroth et al. 1998 

Leuconostoc gelidum subsp. 

gasicomitatum /gelidum 

Cooked turkey slice 

Cooked meat products 

MAP minced meat 

MAP beef 

MAP marinated broiler 

Pothakos et al. 2014a 

Pothakos et al. 2014a 

Nieminen et al. 2011 

Vihavainen et al. 2007b 

Björkroth et al. 2000 

Leuconostoc inhae Cooked turkey slice Pothakos et al. 2014a 

Leuconostoc mesenteroides VP beef Yang et al. 2009 

Weissella spp. Cooked turkey slice 

MAP minced meat 

MAP beef 

Pothakos et al. 2014a 

Nieminen et al. 2011 

Ercolini et al. 2011 
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al., 2000, Eagan et al., 1989). Greening is caused by hydrogen peroxide 

produced by certain LAB strains in the presence of oxygen reacting with 

myoglobin in meat, whereas slime is extracellular polysaccharide 

synthesised from carbohydrates present in meat (Vihavainen et al., 2008, 

Vihavainen and Björkroth, 2007). Accumulation of lactic acid results in a 

decrease in pH and decreased water-holding capacity and thus cloudy liquid 

in the meat package. 

2.3.4 THE DUAL ROLE OF LAB IN MEAT 

Spoilage caused by LAB occurs more slowly than and is not as offensive as 

spoilage caused by proteolytic Gram-negative bacteria. Thus, LAB can be 

used as protective cultures to prevent the growth of other spoilage and 

pathogenic bacteria in meat and meat products (Koo et al., 2012, Jones et 

al., 2008, Hugas et al., 2003). The use of LAB in bioprotection is still scarce 

in fresh meat due to acidification (Vasilopoulos et al., 2010). However, LAB 

are widely used as starters in meat fermentation, where acidification and 

change in aroma and texture in addition to bioprotection are desirable 

(Fadda et al., 2010, Leroy and Vuyst, 2005). The LAB strains used as 

protective cultures or in fermentation of meat should be tested for virulence 

traits, antibiotic resistance and spoilage potential, since these traits are 

clearly strain dependent (Casaburi et al., 2011, Doulgeraki et al., 2010, 

Vasilopoulos et al., 2010, Hugas et al., 2003). Moreover, inhibition tests 

should be performed in the food matrix instead of laboratory media, since 

bacteriocins can lose their bioactivity in meat due to adsorption to fat and 

protein particles (Leroy and Vuyst, 2005). Because of the strain variation in 

spoilage potential, a LAB species can be considered as a spoilage organism, 

a protective organism or an innocuous member of the microbiota of meat 

(Casaburi et al., 2011, Doulgeraki et al., 2010, Ercolini et al., 2009). L. 

piscium, for instance, is used for bioprotection in seafood, whereas when 

growing in meat and vegetables certain strains are considered as part of the 

spoilage association (Pothakos et al., 2014b, 2014d, Fall et al., 2012). 

Interactions of micro-organisms also affect the production of spoilage 

metabolites, which complicates the classification of LAB species/strains as 

“spoilers” or “non-spoilers” (Ercolini et al., 2009). 

2.3.5 INTERACTIONS OF LAB DURING GROWTH IN MEAT 

In addition to external conditions, interactions between bacteria have an 

effect on the development of the microbiota on meat during storage (Gram et 

al., 2002). At the time of spoilage, the levels of LAB in packaged meat are 

often 7 to 8log10 (c.f.u. g-1). During growth, the microbes can influence each 

other’s growth and metabolism by antagonism, metabiosis or cell-to-cell 

communication (Gramm et al., 2002). LAB antagonise other bacteria by 

lowering the pH of meat by producing lactic acid and bacteriocins, and by 
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outcompeting on essential nutrients (Ivey et al., 2013, Qimenez and 

Dalgaard, 2004). Metabiosis between LAB and Enterobacteriaceae in meat 

has been detected in several studies. Some LAB are able to utilise arginine 

as an energy source and co-culturing these strains with putrescine-forming 

Enterobacteriaceae results in higher levels of biogenic amines than in 

monocultures (Borch et al., 1996, Dainty et al., 1986). Cell-to-cell 

communication of LAB at the transcriptome and proteome level has been 

studied in sourdough production and milk fermentation (Herve-Jimenez et al., 

2009, Di Cagno et al., 2007). This type of bacterial interaction probably 

occurs during succession in meat as well. Leuconostoc spp. isolates from 

MAP-minced meat exhibited autoinducer-2-like activity indicating intra- and 

interspecies communication (Blana et al., 2011). Modern transcriptomics and 

proteomics methods provide tools for studying bacterial interactions and 

hopefully new data on the subject will be available in the near future. 

2.4 METHODS FOR IDENTIFICATION, 
CHARACTERISATION, AND POPULATION STUDIES 
OF LAB 

The classification of LAB was originally based on morphology, sugar 

fermentation patterns, temperature range of growth and mode of glucose 

fermentation (Von Wright and Axelsson, 2012). These properties are still 

used in the differentiation and characterization of LAB, but modern genotypic 

and sequence-based methods are often needed for species level 

identification (Michel et al., 2007, Naser et al., 2005, Facklam and Elliot 

1995). The development of high-throughput sequencing methods has 

significantly reduced the time and money required for whole genome 

sequencing (WGS) of bacteria and in future, WGS may be considered a 

routine tool in bacteria identification and characterisation (Köser et al., 2012). 

2.4.1 PHENOTYPIC METHODS 

All LAB are Gram-positive, catalase negative, facultatively anaerobic and 

non-sporulating (Von Wright and Axelsson, 2012). LAB can be either coccal 

or rod-shaped; coccal LAB can sometimes be confused with short rod-

shaped bacteria such as lactobacilli (Facklam and Elliot, 1995). Enterococci, 

lactococci and leuconostocs divide in one plain and thus form pairs and 

eventually chains if the cells remain attached (Facklam and Elliot, 1995). 

Table 2 shows the “Classical” phenotypic characteristics for each genus of 

LAB. 
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Table 2. “Classical” phenotypic characteristics of LAB genera associated with meat. 
Modified from Axelsson et al., 2004. 

Genus Cell 
shape 

CO2 from 
glucose 

Growth at 
10°C 

 
45°C 

6,5% 
NaCl 

 
pH 
4,4 

 
pH 
9,6 

Carnobacterium rods - + - ND ND - 
Lactobacillus rods D D D D D - 
Lactococcus cocci - + - - D - 
Leuconostoc cocci + + - D D - 
Enterococcus cocci - + D + + + 
Weissella rods/cocci + + - D - - 

D, strain-dependent; ND, not detected 

 

The classical characteristics for distinguishing enterocci from other Gram-

positive, catalase negative, facultatively anaerobic cocci include their ability 

to grow at 10 and 45°C, in 6.5% NaCl, and at pH 9.6, and the presence of 

Lancefield group D antigen (Devriese et al., 1993). However, even genus-

level identification can be misleading for the recently-described species in 

the E. avium species group that do not grow at 45°C or react with Lancefield 

group D antisera (Koort et al., 2004, Svec et al., 2001). In addition, species 

from the genera Streptococcus, Lactococcus, Leuconostoc, Pediococcus 

and Aerococcus may give positive results in some of the “classical tests” 

mentioned above (Devriese et al., 1993).  

Even though lactococci are phylogenetically closer to streptococci than to 

enterococci (Fig. 1), they can be confused with enterococci if only phenotypic 

tests are used for identification (Facklam and Elliott, 1995). Some lactococci, 

such as L. garvieae strains, can grow at 45°C, pH 9.6 and in 6.5% NaCl, and 

not all strains possess the Lancefield group N antigen (Eldar et al., 1999, 

Facklam and Elliott 1995).  

Members of the genus Leuconoctoc are resistant to vancomycin, produce 

gas from glucose, are unable to hydrolyze arginine and produce only D(-) 

isomer of lactic acid from glucose (Björkroth and Holzapfel, 2006). 

Distinguishing leuconostocs from weissellas can be challenging and requires 

several carbohydrate fermentation tests (Björkroth and Holzapfel, 2006).  

Differentiation of Enterococcus, Lactococcus and Leuconostoc species 

based on phenotypic tests is laborious and of limited use due high strain 

variation (Michel et al., 2007, Björkroth and Holzapfel, 2006, Naser et al., 

2005, Facklam and Elliott, 1995, Knudtson et al., 1992). 

LAB were previously thought to lack the cytochromes of the respiratory 

chain, but recent studies have shown the presence of cytochrome oxidase 

genes in the genomes of many LAB (Brooijmans et al., 2009, Bolotin et al., 

2001). Many LAB species are able to respire in the presence of heme and 

thus improve their growth and stress resistance (Johansson et al., 2011, 

Brooijmans et al., 2009). 
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2.4.2 GENOTYPIC METHODS 

Among the traditional molecular characterisation techniques, ribotyping has 

been reported to be a reliable tool for species level identification of 

lactococci, enterococci and leuconostocs (Lang et al., 2001, Svec et al., 

2001, Björkroth et al., 2000, Rodrigues et al., 1991, Hall et al., 1992). 

However, previous studies on lactococci and enterococci have included only 

a limited number of strains/species and the method has not yet been used to 

establish species identification libraries in these genera. In ribotyping, 

genomic DNA is digested, the DNA fragments are separated by 

electrophoresis, blotted onto a membrane and finally only bands containing 

rDNA sequence are visualised by hybridisation to a labelled probe. 

Ribotyping provides high discriminatory power at the species/subspecies 

level, but is usually not discriminatory enough at the strain level. The 

discriminatory power of ribotyping can be increased by using multiple 

restriction enzymes and combining the data using numerical analyses. 

Other DNA fingerprinting methods often applied to LAB include pulse-field 

gel electrophoresis (PFGE), randomly amplified polymorphic DNA (RAPD) 

and amplified fragment length polymorphism (AFLP) (Ben Amor et al., 2007). 

PFGE is time-consuming, but highly discriminatory, whereas RAPD is rapid, 

sensitive and inexpensive, but has low reproducibility. Additional limitations 

of these genotypic methods are their low cost/time-effectiveness and the fact 

that before typing the organism must be isolated. However, these methods 

are still often needed for strain level studies, as well as for proper species 

level identification for LAB with highly conserved 16S rRNA gene sequences. 

DNA fingerprinting methods can also be useful in in identifying large 

numbers of unknown LAB isolates in studies where isolates are picked for 

further analyses.  

2.4.3 GENE-BASED APPROACHES 

Contrary to genotype-based methods, gene-based approaches provide 

evolutionary data on the bacteria studied. Sequence analysis of single or 

multiple genes has been widely applied to bacterial taxonomy since the 

1970s, when in his pioneer work, Carl Woese showed that 16S rRNA 

sequence is a useful phylogenetic marker present throughout the prokaryotic 

world (Woese and Fox, 1977). The 16S rRNA gene is highly conserved, but 

also contains variable regions with species-specific signature sequences. 

Public databases provide an enormous amount of 16S rRNA gene sequence 

data and also quality-controlled data is available in several databases 

(McDonald et al., 2012, Pruesse et al., 2007, DeSantis et al., 2006). 

However, the discriminatory power of 16S rRNA sequence is too low for 

species level identification in some bacterial groups: e.g. for species within 

Enterococcus avium and Leuconostoc gelidum species groups (Svec et al., 

2005, Björkroth et al., 2000, Patel et al., 1998, Williams et al., 1991). For 
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newly described taxa, 16s rRNA sequence data is still required 

(Stackebrandt et al., 2002). 

Recently, the usefulness of protein coding housekeeping genes in 

bacterial taxonomy and phylogeny has been recognised. To obtain 

informative data, the genes chosen for sequence analysis should be under 

stabilising selection, located at diverse chromosomal loci and widely present 

among taxa (Stackebrandt et al., 2002). In multilocus sequence analysis 

(MLSA), sequences of internal fragments of several (typically three to eight) 

housekeeping genes are concatenated and the sequence data are used to 

delineate microbial species or to assess the phylogenetic position of the 

strains studied. MLSA is suitable for studying bacterial relationships at a wide 

range of evolutionary distances, from intraspecies to the genus level (Gevers 

et al., 2005). The ad hoc committee for re-evaluation of the species definition 

regarded MLSA as a method of great promise for prokaryotic systematics 

(Stackebrandt et al., 2002). 

Within LAB, MLSA has been successfully used in the species delineation 

of enterococci, lactobacilli and lactococci (Rademaker et al., 2007, Naser et 

al., 2007, 2005). Sequence analysis of DNA-directed RNA polymerase 

subunit A (rpoA) and phenylalanyl tRNA synthetase α chain (pheS) genes 

has been shown to differentiate species of enterococci and lactobacilli, but to 

our knowledge there are no reports on the suitability of these genes for 

species level identification of lactococci (Naser et al., 2007, 2005). Instead, 

Perez et al., (2011) showed that DNA-directed RNA polymerase subunit B 

(rpoB) and DNA recombination protein (recA) genes are highly useful in in 

identifying lactococci at the species level.  

2.4.4 MLST 

MLST is a typing scheme based on the DNA sequence of typically four to ten 

loci in a bacterial genome to identify and classify bacterial strains, and to 

assess population genetics and epidemiology of the species. Contrary to 

MLSA, most downstream analyses are based on sequence types (STs) 

assigned by allele numbers of the loci: each unique allele is given an 

arbitrary number and strains that share alleles at all loci represent the same 

ST (Maiden et al., 1998). Thus, both point mutation and recombination are 

considered as one genetic event. The latter mechanism often poses a 

problem when attempting to infer ancestral relationships of bacterial strains, 

since in recombination several nucleotides change at once. Recombination 

events are thus overweighted compared to point mutations when applying 

sequence-based approaches without the ability to recognise sequences 

gained by this mechanism.   

ST designations can be used in definitions of strains or in population 

genetic approaches by grouping STs into groups with common ancestral 

origin. The relationships between STs that differ at more than three out of 

seven loci are likely to be unreliable (Enright and Spratt, 1999). eBurst (Feil 
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et al., 2004) is a commonly used algorithm which divides MLST datasets into 

groups of related isolates and clonal complexes (CC). eBurst relies on the 

model according to which a founding genotype first multiplies within the 

population and then gradually diversifies into single-locus variants (SLV), 

double-locus variants (DLV) and triple-locus variants (TLV). eBurst 

subdivides STs into groups, recognises the founding genotypes, assigns 

levels of confidence in these primary founders and displays the most 

parsimonious patterns of descent of STs within each clonal complex from the 

primary founder. eBurst only shows the relationships of strains that have 

diverged very recently and is mostly suited for exploratory data analysis 

rather than exact inference of population structure. 

Bayesian models infer the population structure using sequence data 

instead of allele numbers. Bayesian analysis of population structure (BAPS) 

(Corander et al., 2003) divides the population into subgroups based on 

sufficiently similar nucleotide frequencies and infers the level of genetic 

admixture between the subgroups. ClonalFrame (Didelot and Falush, 2006) 

is another common Bayesian-based method to assess the clonal 

relationships of bacteria, to estimate the frequency of recombination and 

mutation, and to predict the age of the common ancestor. Bayesian-based 

methods are able to predict whether changes in sequence result from 

recombination or mutation and are thus more accurate than traditional 

phylogenetic methods in estimating bacterial genealogies. 

MLST is typically applied to typing strains within one species. Even within 

genera, it is often necessary to develop multiple MLST schemes since 

housekeeping genes vary among bacterial species/genera. However, since a 

small number of housekeeping genes only represent a fraction of the 

genome of an organism, they can only provide a limited insight into the 

bacterial evolution. Owing to rapidly developing next generation sequencing 

technology, the MLST approach can be amended by utilising the genes 

encoding ribosomal proteins (ribosomal MLST, rMLST) or even the whole 

genome sequence data (whole-genome multilocus typing, wgMLST) (Maiden 

et al., 2013). Whole genome sequence data as a basis for either allele-based 

or sequence-based approaches will probably replace the “traditional” MLST 

in the future. This, however, requires the development of model-based 

statistical analysis approaches such as BAPS and ClonalFrame for the 

analysis of these enormous datasets. 

Within the genus Leuconostoc, MLST has previously been applied only to 

the species Leuconostoc lactis (Dan et al., 2013). MLST analyses revealed 

that the L. lactis population studied was highly clonal, with indication of 

genetic exchange only within the subpopulations. Genomes of leuconostocs 

are known to contain several restriction modification systems, which can limit 

the genetic exchange and may explain the clonal population structure 

(Roberts et al., 2013, Johansson et al., 2011). 



Review of the literature 

26 

2.4.5 WHOLE GENOME SEQUENCING  

Genome analysis and comparison provide insights into the metabolic 

potential, characteristics and evolution of LAB (Pfeiler and Klaenhammer, 

2007, Siezen et al., 2004). The falling costs and less time for whole genome 

sequencing (WGS) have already resulted in the application of this method in 

diagnostic microbiology and surveillance (Grad et al., 2011, Rasko et al., 

2011). Whole genome sequences are also useful in functional genomics 

studies for mapping the RNA sequence reads (Sorek and Cossart, 2010). 

WGS can be considered as the ultimate source of information and complete, 

closed genome sequences as permanent, valuable scientific resources 

(Fraser et al., 2002). In genomic studies of spoilage bacteria, identifying 

metabolic pathways/genes associated with spoilage reactions is essential, as 

is functional analyses utilising cloning techniques, transcriptomics and 

metabolomics (Remenant et al., 2015). 

Comparative genomics of fully-sequenced LAB genomes have revealed 

that the genomes of these organisms are relatively small, between 1.8 to 3.3 

Mb, with the number of genes in the range of 1200 to 3000 (Makarova and 

Koonin 2007, Pfeiler and Klaenhammer 2007). Characteristic for the 

divergence of Lactobacillales from their ancestor Bacilli was substantial loss 

of genes, including genes for biosynthetic enzymes and for sporulation, due 

to adaptation to more nutrient-rich environments (Makarova and Koonin, 

2007, Pfeiler and Klaenhammer, 2007). The majority of the genome 

sequences used in these comparative genomics studies represented the 

genus Lactobacillus, whereas only one Leuconostoc and a few Lactococcus 

genomes were included (Makarova and Koonin, 2007, Pfeiler and 

Klaenhammer, 2007). Within the genus Lactococcus, whole genome 

sequences are only available for strains of the species L. lactis and recently, 

L. garvieae, whereas the genome of L. piscium is still lacking (Ricci et al., 

2013, Ainsworth et al., 2013, Kato et al., 2012, Ricci et al., 2012, Gao et al., 

2011, Siezen et al., 2010, Wegmann et al., 2007, Bolotin et al., 2001). Within 

the genus Leuconostoc species relevant in meat environment, the genomes 

of L. gasicomitatum and L. gelidum have recently been published (Jung et 

al., 2012, Johansson et al., 2011). The genome of L. gasicomitatum 

possessed genes required for the utilisation of ribose, external nucleotides, 

nucleosides and nucleobases, which all are abundant in meat. The 

pathways/genes associated with buttery off-odour, greening of meat and 

slime formation were recognised, as well as genes associated with platelet 

binding and collagen adhesion (Johansson et al., 2011). The growing 

number of fully-sequenced genomes of LAB will provide a basis for more 

comprehensive genomic studies in the future. 

2.4.6 HIGH-THROUGHPUT SEQUENCING APPROACHES 

The first culture-independent methods for studying microbial communities 

were denaturing gradient gel electrophoresis (DGGE), terminal restriction 
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fragment length polymorphism (T-RFLP) and DNA microarrays (Ben Amor et 

al., 2007). The low sensitivity in detecting rare members of the community, 

as well as the low discriminatory power, lack of quantitative data and low 

sample throughput are the disadvantages of both DGGE and T-RFLP, and 

the methods are most useful in comparing community structural changes 

(Nieminen et al., 2011, Ben Amor et al., 2007, Ercolini 2004, Temmermann 

et al., 2004). The major limitation of DNA microarrays is that they can only 

detect species that are known to prevail in the community and for which the 

probes of the array are targeted (Roh et al., 2010). High-throughput 

sequencing (HTS), including pyrosequencing (454 Life Sciences, Inc.) 

provides cost-effective, rapid sequencing of high numbers of DNA from 

complex samples and has mostly replaced other approaches (Roh et al., 

2010). The most important feature of HTS is the ability to discover novel 

gene diversity without previous knowledge of the microbial community 

studied (Roh et al., 2010). In addition, HTS analysis is considered 

quantitative, even though nucleic acid extraction and PCR steps can alter the 

proportion of the micro-organisms and thus bias the results (Ercolini et al., 

2013). 

Pyrosequencing of short hypervariable regions of SSU rRNA was first 

used to characterise microbial diversity in the deep sea (Sogin et al., 2006). 

Following the advances in environmental microbiology, rRNA amplicon 

sequencing has been applied to study the microbial ecology of food, mostly 

food fermentation (Alegria et al., 2012, Jung et al., 2012, Kim et al., 2011, 

Sakamoto et al., 2011, Humblot and Guyot, 2009). In food spoilage research, 

Ercolini et al., (2011) studied the changes in the microbiota of beef during 

storage in different atmospheres by pyrosequencing and showed that the 

changes in microbiota of the meat resulted in complex shifts in the 

metabolites produced. De Filippis et al., (2013) studied the microbial diversity 

of beefsteaks and the sources of spoilage bacteria by examining samples 

from beef, carcasses and the production plant by pyrosequencing. The 

carcasses were shown to carry the spoilage microbes to the processing 

environment, where they became part of the resident microbiota (De Filippis 

et al., 2013).  

In rRNA amplicon sequencing, the taxonomic resolution varies depending 

on the length of the amplicon (150-500 bp), as well as the level of 

conservation in the rRNA gene within the genus (Ercolini et al., 2013). 

Usually species-level identification, and thus long sequence reads, is 

required. The reliability of taxonomic assignment also depends on the quality 

of the reference database against which the sequences are compared and 

only curated databases should be used (McDonald et al., 2012, Pruesse et 

al., 2007, DeSantis et al., 2006). Sample coverage should be adjusted to the 

environment studied and can be determined by rarefaction analysis of 

sequencing data (Ercolini et al., 2013).  

High-throughput sequencing approaches will mostly replace traditional 

culture-based methods in microbial community studies. However, culture-
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based methods are still needed for more detailed studies of individual 

isolates. 
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3 AIMS OF THE STUDY 

The objectives of the present thesis were to study the taxonomy and diversity 

of psychrotrophic, coccal LAB associated with meat and meat production. 

 

The specific aims of this thesis were as follows: 

 

1. To resolve the taxonomic status of unknown coccal LAB from meat 

and the meat processing environment  

 

2. To clarify the taxonomy of Leuconostoc gelidum and Leuconostoc 

gasicomitatum   

 

3. To assess the suitability of numerical analysis of ribopatterns in 

species level identification of lactococci and enterococci associated 

with meat and meat production  

 

4. To assess the suitability of sequence analysis of two housekeeping 

genes in identification of species in the genus Lactococcus 

 

5. To evaluate the spoilage potential of Lactococcus strains isolated from 

MAP meat 

 

6. To develop an MLST scheme for Leuconostoc gelidum subsp. 

gasicomitatum and study the genetic diversity of L. gelidum subsp. 

gasicomitatum strains from meat and vegetable sources 
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4 MATERIALS AND METHODS 

4.1 BACTERIAL STRAINS AND CULTURING (I, II, III, IV) 

In study I, 36 isolates that were presumptively identified as enterococci 

based on numerical analysis of HindIII ribopatterns were picked from 

previous studies for further identification (Vihavainen et al., 2007, Björkroth et 

al., 2005). Strains isolated from the air of a broiler processing facility 

originated from a study by Vihavainen et al., (2007). They had been plated 

using Reuter centrifugal air samplers (RCS sampler; Biotest AG, Dreieich, 

Germany) on a strip of MRS agar (Oxoid, Basingstoke, United Kingdom). 

Samples from broiler carcasses had been psychrotrophically enriched by 

incubation in MRS broth at 6°C for 38 days. LAB from MAP broiler products 

(Vihavainen et al., 2007, Björkroth et al., 2005) had been isolated using MRS 

medium and anaerobic incubation at 25°C for 5-6 days. 

In study II, 222 strains from MAP meat with similar HindIII ribopatterns 

were chosen for further identification (Nieminen et al., 2011, Vihavainen et 

al., 2007, Björkroth et al., 2005). In addition to the strains isolated during 

previous studies, further strains were isolated from porcine Musculus 

masseter and MAP turkey. The strains from Musculus masseter originated 

from MAP meat strips cut and packaged in a small-scale plant from fresh 

meat transported from a slaughterhouse. One-hundred to two-hundred g of 

pork strips were packaged under modified atmosphere containing 70% O2 

and 30% CO2, and stored at 6°C for 13 days prior to sampling. The strains 

from turkey were isolated from retail MAP turkey fillet or fillet strips from one 

large-scale manufacturer. Packages were stored at 6°C and examined on 

the use-by day (12 d). Twenty-two g of pork or turkey meat were 

homogenised with 0.1% peptone water using a Stomacher blender. Serial 

10-fold dilutions of the homogenised samples were plated and colonies were 

randomly selected and picked for further studies. All strains were isolated 

using MRS medium (Oxoid, Basingstoke, Hampshire, England) or NAP-agar 

[APT-agar (Merck, Darmstadt, Germany) supplied with sodium nitrite 0.06% 

wt/vol, actidione (cycloheximide) 0.1% wt/vol and polymyxin-B 0.03% wt/vol] 

and incubated under anaerobic conditions [Anaerogen (Oxoid); 9-13% CO2 

according to the manufacturer’s instructions] at 25°C for 5-6 days. 

In study III, 20 LAB strains were isolated from vacuum packaged pork, 

vacuum packaged turkey and modified atmosphere packaged (MAP) broiler 

obtained from a local grocery store. The strains were isolated by 

homogenising 22 g of meat on the sell-by day ± 1 day with 0.1% peptone 

water and plating 10-fold dilutions on MRS medium at anaerobic conditions 

at 25°C for 5 days.  The strains were chosen for the study based on similar 

HindIII ribopatterns. In the numerical analysis of HindIII ribopatterns, these 
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strains showed a high level of similarity to Leuconostoc gasicomitatum and 

Leuconostoc gelidum, but their taxonomic status remained unclear.  

In study IV, 252 strains from our culture collection identified as L. gelidum 

subsp. gasicomitatum were chosen based on PFGE types, ribotypes and 

sources, to study the population structure of the species by MLST. Isolation 

was performed as described by Vihavainen and Björkroth (2009). The strains 

were isolated from MAP poultry, pork, beef and lamb, and salad, carrots and 

a fish product containing vegetables. Most strains were from Finnish 

products, but a few strains were from products imported from Estonia, Spain 

or New-Zealand.   

Type and reference strains used are presented in each study (I-IV). All 

strains were grown in MRS broth and MRS agar or M17 broth (Oxoid) with 

0.5% glucose (GM17) or 0.5% lactose (M17) and GM17 or M17 agar (Oxoid) 

at 25°C. The plates were incubated in anaerobic jars in a CO2-enriched 

atmosphere [Anaerogen (Oxoid)]. All isolates were maintained in MRS broth 

(Oxoid) at -70°C. 

4.2 MORPHOLOGY AND PHENOTYPIC TESTS (I, II, III) 

All isolates were Gram-stained and tested with 3% hydrogen peroxide for the 

presence of catalase. 

In study I, the growth tests at different temperatures and NaCl 

concentrations, carbohydrate fermentation profiles, Lancefield antigen D, 

hemolysis, the production of ammonia from arginine and the formation of 

typical colonies for enterococci were performed as described by Koort et al., 

(2004). In study II, growth was tested at temperatures of 0, 4, 10, 37 and 

40°C, at pH 4.5, and 6, and in NaCl concentrations of 2, 4, and 6.5% in 

GM17 broth (Oxoid) for 21 days. In study III, growth was tested at 

temperatures of 0, 5, 10, 15, 25, 30, and 37°C, at pH 2-10, and in NaCl 

concentrations of 2, 4, 6.5, and 8% in MRS broth (Oxoid) grown for 21 days. 

Carbohydrate fermentation profiles and enzyme activities were tested using 

API 50CH and API 20 Strep identification systems (bioMeriéux, Marcy 

l’Etoile, France) according to the manufacturer’s instructions (II, III). The 

production of ammonia from arginine was tested as described by Koort et al., 

(2004). Motility was tested by stab inoculation in semisolid media. All tests 

were carried out at least twice and done at 25°C unless otherwise stated.  

In study II and III, the growth of four representative isolates, MKFS47, 

LTM33-6, JL3-4, and LTM26-2, (II) or L. gelidum NCFB 2775T, L. 

gasicomitatum LMG 18811T, and strains AMKR32, POKY4-4, and POUF4h 

(III) in the presence of exogenous heme was tested in GM17 broth (Oxoid) 

(II) or MRS broth (III) supplemented with 2 µg/ml of heme (Sigma, stock 

solution 0.5 mg/ml in 1:1 DMSO:H2O). An equivalent volume of 1:1 

DMSO:H2O was added to the controls growing without heme. Aerobic 

conditions with a 2:10 medium/volume ratio and agitation at 200 rpm was 
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used. OD600 (optical density at 600 nm) of the cultures was measured after 

48 h incubation at 25°C. The growth tests were repeated four times. 

Lactococcus lactis MG1363 was used as a positive control. 

4.3 ISOLATION OF DNA (I, II, III, IV) 

Cells harvested from broth culture were used for DNA isolation for ribotyping, 

sequence analysis, determination of the G+C content and DNA-DNA 

reassociation. DNA was isolated as described by Björkroth and Korkeala 

(1996). The guanidium thiocyanate method of Pitcher et al., (1989) was 

modified by using lysozyme (25 mg/ml) and mutanolysin (200 U/ml) in the 

cell lysis solution. 

4.4 RIBOTYPING (I, II, III) 

Ribotyping was performed as described by Björkroth and Korkeala (1996). 

EcoRI and HindIII (I) or EcoRI, HindIII, and ClaI (II) restriction enzymes were 

used to digest 8 µg of DNA, as specified by the manufacturer (New England 

Biolabs, Beverly, MA, USA). DNA fragments were separated by agarose gel 

electrophoresis and Southern blotting was performed using a Vacugene 

blotting system (Pharmacia, Uppsala, Sweden). A digoxigenin-labelled probe 

mixture, OligoMix5, was used for detecting the fragments containing 16S or 

23S rRNA gene (Regnault et al., 1997). The membranes were hybridised at 

53°C, and the labelled fragments were detected by anti-digoxigenin antibody 

conjugated with alkaline phosphatase and NBT/BCIP (nitro blue tetrazolium 

chloride/5-bromo-4-chloro-3-indonyl phosphate) as recommended by the 

manufacturer Roche Molecular Biochemicals, Mannheim, Germany). 

Scanned (Scan Jet 4c/T, Hewlett Packard, Palo Alto, CA, USA) ribopatterns 

were analysed using Bionumerics software version 5.10 (Applied Maths, 

Sint-Martens-Latem, Belgium) and compared to the corresponding patterns 

in the previously established database of 295 LAB type and reference strains 

(Björkroth and Korkeala 1996). The Dice coefficient correlation and 

unweighted-pair group method using average linkages (UPGMA) were used 

for construction of the dendrograms. Band position tolerance of 1.5% and 

pattern optimisation of 0.6% was allowed for the bands. 

4.5 SEQUENCE ANALYSIS OF 16S RRNA, ATPA, PHES, 
AND RPOA GENES (I, II, III) 

Sequencing of the 16S rRNA gene was performed as described by 

Vihavainen et al., (2007). The nearly complete 16S rRNA gene was amplified 

using a universal primer pair F8-27 and R1541-1522. The PCR product was 

purified (QIAquick PCR purification kit; Qiagen) and sequenced by Sanger’s 
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dideoxynucleotide chain termination method using two long (primers F19–38 

and R1541–1522) and two shorter reactions (primers F926 and R519). 

Samples were run in a Global IR2 sequencing device with e-Seq (version 

2.0) software (LiCor, Lincoln, NE) according to the manufacturer’s 

instructions. The consensus sequences were created with AlignIR software 

(LiCor). 

Sequencing of the housekeeping genes pheS and rpoA was performed 

as described by Naser et al., (2005). Primer pairs pheS-21-F/pheS-22-R, 

pheS-21-F/pheS-R008, pheS-F004/pheS-R011, rpoA-21-F/rpoA-23-R and 

rpoA-21-F/rpoA-R009 (I, III), or rpoA-F025/rpoA-R026, pheS-F025/pheS-

R025 and pheS-F026/pheS-R026 (II) were used for amplification of the 

genes (Table 3.). PCR was performed using PTC-200 version 3.8 (MJ 

Research, Massachusetts, USA). Primer pairs rpoA-21-F/rpoA-23-R and 

pheS-21-F/pheS-22-R (I, III) or rpoA-21F/R026, pheS-F025/R025 and pheS-

F026/R026 (II) were used for sequencing. Sequencing was performed with 

the BigDye termination cycle sequencing kit (Applied Biosystems, Foster 

City, CA) and an ABI 3700 capillary DNA sequencer (GMI, Ramsey, MN). 

Sequences were assembled using the Staden package (Medical Research 

Council Laboratory of Molecular Biology, Cambridge, UK). 

 

Table 3. MLSA primers used in this study. 

Gene Primer Sequence 5´-3 

16S rRNA F8-27 AGAGTTTGATCCTGGCTGAG 
 R1541-1522 AAGGAGGTGATCCAGCCGCA 
 F19–38 CTGGCTCAGGAYGAACGCTG 
 F926 AACTCAAAGGAATTGACGG 
 R519 GTATTACCGCGGCTGCTG 
   
pheS* pheS-21-F CAYCCNGCHCGYGAYATGC 
 pheS-22-R CCWARVCCRAARGCAAARCC 
 pheS-R008 CCAGCHCCHAGHACTTCAATCCA 
 pheS-F004 ATGAATCTDCCWAAAGATCAYCC 
 pheS-R011 TAAGAAACGTAARTCATTTTGATARAA 
 pheS-F025 TATAAYTTTGARCGMATGAATCTWCC 
 pheS-R025 CCTGCACCWARDAYTTCAATCCA 
 pheS-F026 AAAGATCAYCCAGCKCGTGATATGCAA 
 pheS-R026 GGATGGACCATWCCTGCACC 
   
rpoA° rpoA-21-F ATGATYGARTTTGAAAAACC 
 rpoA-23-R ACHGTRTTRATDCCDGCRCG 
 rpoA-R009 TCWARYTCTTCRATNGTCAT 
 rpoA-F025 TGATTGAGTTTGAAAAACC 
 rpoA-R026 TTCAAACMRTTRTAAGHACGAAC 

* phenylalanyl tRNA synthetase α chain; °DNA-directed RNA polymerase subunit A 

 

The 16S rRNA, pheS and rpoA gene sequences were subjected to the 

BLAST search program (Altschul et al., 1997) and sequences of 

representative strains from the same phylogenetic group were retrieved from 

GenBank (http://www.ncbi.nlm.nih.gov). The sequences were aligned using 

ClustalX software (Thompson et al., 1994). Phylogenetic trees were 

http://www.ncbi.nlm.nih.gov/
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constructed by using Bionumerics version 5.10 (Applied Maths, Sint-

Martens-Latem, Belgium) and the neighbour-joining and maximum-

parismony methods (I, II) or PALM (Chen et al., 2009) by the Maximum 

Likelihood method and ClustalX by the neighbour-joining method (III). 

Bootstrap analysis was performed with 500 (I, II) or 1000 (III) replications. 

4.6 DETERMINATION OF THE G+C CONTENT AND DNA-
DNA REASSOCIATION (I, III) 

In study I, the DNA GC content of strains IE3.2 and IE35.3 was determined 

as described by Xu et al., (2000). The melting point curves were determined 

in 1 x SSC with the LightCycler (Roche Diagnostics) instrument using SYBR 

green I dye (Roche Diagnostics). E. devriesei LMG 14595T and 13603 was 

used as the reference organism and E. hermanniensis LMG 12317T was 

used as the control. 

DNA-DNA reassociation in studies I and III was performed by DSMZ 

(Braunschweig, Germany). Briefly, DNA was isolated using a French 

pressure cell (Thermo Spectronic) and was purified by chromatography on 

hydroxyapatite as described by Cashion et al., (1977). DNA-DNA 

hybridisation was carried out as described by De Ley et al., (1970) under 

consideration of the modifications described by Huss et al., (1983) using a 

model Cary 100 Bio UV/VIS-spectrophotometer equipped with a Peltier-

thermostatted 6x6 multicell changer and a temperature controller with an in 

situ temperature probe (Varian). 

4.7 MLST (IV) 

Initially, ten housekeeping genes were selected for analyses, but three of 

them (atpA, dnaA, and rpoA) were rejected because they either contributed 

with too little variation or were located too close to another selected gene in 

the chromosome. Sequencing was performed with the primers and protocol 

described in study IV. The genes selected for the MLST scheme were ddl (D-

alanyl-alanine-synthetase), dnaK (chaperone protein DnaK), gyrB (DNA 

gyrase, subunit B), lepA (leader peptidase A), pgm (phosphoglucomutase), 

pheS (phenylalanine synthetase, alpha subunit) and rpoC (RNA polymerase, 

beta prime subunit). Multiple sequence alignment was performed using 

MAAFT (Katoh and Standley, 2013) and the dN/dS ratio, the pi (π), Tajima’s 

D values and the minimum number of recombination events (Rm) were 

calculated using DnaSp v5.1 (Librad and Rozas 2009). goBURST (Fransisco 

et al., 2009) algorithm as implemented in PHYLOVIZ (Fransisco et al., 2012), 

and BAPS (Corander et al., 2003) linkage clustering and the corresponding 

admixture model were used for estimating the population structure of L. 

gelidum subsp. gasicomitatum. A phylogenetic tree of the concatenated 
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sequences of the 46 STs was constructed by maximum likelihood analysis 

by PALM (Chen et al., 2009). ClonalFrame (Didelot and Falush, 2006) was 

used to estimate the recombination ratio for the population. 

4.8 INOCULATION EXPERIMENTS (II) 

Two L. piscium strains, and for comparison, a type strain of a well-known 

spoilage bacterium, Brochothrix thermospacta CCUG 35132T, were 

individually inoculated onto fresh pork at a level of 105 cfu/ on each side of a 

piece of 30 g pork fillet (Longissimus dorsi). The samples were packaged in 

high barrier film under modified atmosphere containing 71% O2, 22% CO2 

and 7% N2, and stored at 6°C for 22 days. Microbiological analyses were 

performed every other day from day 0 of storage and sensory analysis was 

performed every other day from day 6 of storage as described in study II. 

The bacterial communities of the pork samples and controls were 

characterised by T-RFLP after 4, 6, and 22 days of storage as described by 

Nieminen et al., (2011). After 22 days of storage, random isolates from the 

pork samples inoculated with the L. piscium strains were identified by 

numerical analysis of HindIII ribotypes as described above. Maximum 

specific growth rates (µmax) and maximum bacterial levels (Nmax) of LAB 

were calculated using DMfit program (Institute ofFood Research, Norwich, 

UK). 



RESULTS AND DISCUSSION 

36 

5 RESULTS AND DISCUSSION 

5.1 IDENTIFICATION AND CHARACTERISATION OF 
NOVEL BACTERIAL GROUPS FROM MEAT AND 
THE MEAT PROCESSING ENVIRONMENT (I, III) 

In studies I and III, a polyphasic approach based on phenotypic and 

genotypic characterisation was applied to describe unknown bacterial groups 

from MAP meat and the meat processing environment. Five LAB isolates 

from a broiler processing plant and broiler products were shown to represent 

a novel species Enterococcus viikkiensis sp. nov. within the genus 

Enterococcus. Twenty LAB originating from packaged meat were shown to 

represent a novel subspecies within the species L. gelidum, L. gelidum 

subsp. aenigmaticum subsp. nov. The novel subspecies was closely related 

to both L. gelidum and L. gasicomitatum, and the taxonomy of these species 

was also clarified. To understand spoilage as a phenomenon, it is important 

to know all the organisms present in food and the production environment. 

Taxonomy provides a basis for further studies on the diversity and 

interactions of organisms involved in spoilage or the development of the in-

house microbiota of food processing plants. 

Numerical analysis of HindIII and EcoRI ribopatterns indicated that the 

isolates had similar banding patterns to each other, but were clearly 

separated from other strains within the genuses Enterococcus and 

Leuconostoc. Sequence analysis of 16S rRNA gene positioned E. viikkiensis 

within the E. avium species group and L. gelidum subsp. aenigmaticum 

within the L. gelidum species group, but 16S rRNA gene is not discriminatory 

enough for species level identification within either of these species groups 

(Svec et al., 2005, Björkroth et al., 2000, Williams et al., 1991).  

Sequence analysis of pheS and rpoA showed that the E. viikkiensis 

strains formed a separate cluster within the E. avium group, with E. devriesei 

as the closest phylogenetic neighbour (Fig. 2). Based on sequence analysis 

of atpA, pheS and rpoA genes, the L. gelidum subsp. aenigmaticum strains, 

as well as the type and reference strains of L. gelidum and L. gasicomitatum, 

were closely related, but formed three clearly separate subgroups (Fig. 3). 

DNA-DNA hybridisation with E. devriesei was clearly below the threshold 

value of 70% for the definition of bacterial species and the name 

Enterococcus viikkiensis sp. nov. was proposed for the novel species with 

strain DSM 24043T (= LMG 26075T = IE3.2T) as the type strain. The DNA-

DNA relatedness values for type and reference strains of L. gelidum and L. 

gasicomitatum assigned these strains to the same species. Reclassification 

of L. gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum subsp. 

nov. was proposed. 
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Fig. 2. Neighbour-joining dendrogram based on the pheS sequences of 31 Enterococcus 
type and reference strains and 33 isolates from modified atmosphere packaged (MAP) 
broiler products and a broiler processing plant. Bootstrap percentages (≥ 50%) after 500 
replicates are shown. Tetragenococcus solitarius is included as an outgroup. 
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Fig. 3. Neighbour-joining tree based on concatenated atpA, pheS, and rpoA gene 
sequences of 22 Leuconostoc strains showing the phylogenetic position of L. gelidum 
subsp. aenigmaticum subsp. nov. within the genus. Leuconostoc fallax LMG 13177T is 
included as an outgroup and bootstrap values above 500 after 1000 resamplings are shown. 

 

DNA-DNA reassociation value between E. viikkiensis and the closest 

phylogenetic neighbour, E. devriesei, was clearly below the value of 70% for 

species delineation, whereas the values between L. gelidum subsp. 

aenigmaticum, L. gelidum and L. gasicomitatum were close to the cut-off 

point (75-82%). The values for L. gelidum and L. gasicomitatum were higher 

than those reported by Björkroth et al., (2000) and Kim et al., (2000), and 

placed these strains within the same species. We thus repeated the 

experiment in another laboratory and confirmed the results. One of the 

commonly recognised pitfalls of DNA-DNA reassociation is high experimental 

error, which may explain the discrepancy of the reassociation results for L. 

gelidum and L. gasicomitatum (Rossello-Mora, 2006). In addition, L. 

gasicomitatum was further from L. gelidum in the phylogenetic analyses than 

the novel subspecies (Fig. 3). Taxonomists are constantly searching for 

alternative methods that could replace DNA-DNA reassociation, but the 

methods proposed to date have not yet achieved gold standard status 

(Tindall et al., 2010). Methods based on whole genome sequence data, such 

as the average nucleotide identity (ANI), will most probably substitute this 

outdated and labour-intensive tool in microbial taxonomy in the very near 

future (Richter and Rossello-Mora, 2009). 
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Additionally, methods recommended by ad hoc committee for the re-

evaluation of the species definition in bacteriology, i.e. sequence analysis of 

housekeeping genes and ribotyping, were used to further verify the 

taxonomic status of the isolates studied (Stackebrandt et al., 2002). Several 

restriction enzymes for ribotyping and housekeeping genes for sequence 

analysis were used in both studies. Both new taxa were described based on 

several strains (five strains in study I and 20 strains in study II) in accordance 

with recommendation by the ad hoc committee (Stackebrandt et al., 2002, 

Christensen et al., 2001). At the moment, species is the lowest taxonomic 

unit that can be defined in phylogenetic terms (Wayne et al., 1987). 

Subspecies status can be proposed to genetically closed organisms that 

diverge in phenotype, but there are no clear standards for subspecies 

description (Wayne et al., 1987).  

The E. viikkiensis strains were isolated from the air of a broiler processing 

plant and, as is typical for enterococci, the strains were able to grow at 37C, 

but not at 4C (Table 4.). Enterococci are common contaminants of fresh 

meat, but are often overgrown by other, more competitive LAB (Björkroth et 

al., 2005). Thus, E. viikkiensis is unlikely to cause spoilage of refrigerated, 

packaged meat (Table 4.). The twenty L. gelidum subsp. aenigmaticum 

strains described in this study were isolated from packaged meat of late 

shelf-life during spoilage studies within several years. The novel subspecies 

can thus be considered a rare contaminant of packaged meat and the 

spoilage potential of strains representing this subspecies is currently 

unknown (Table 4.). 

 

Table 4. Characteristics of species/subspecies identified in this study. 
Species/ 
subspecies 

Source Growth 

at 5C 

 

37C 

Spoilage potential Restriction 
enzymes for 
ribotyping 

E. viikkiensis sp. 
nov. 
 

Broiler 
processing 
plant air 

 
- 
 

 
+ 
 

Unlikely to cause 
spoilage 

HindIII, EcoRI 

L. gelidum subsp. 
aenigmaticum 
subsp. nov. 

Packaged 
meat 

 
+ 

 
- 

Unknown; rare in 
packaged, late 
shelf-life meat 

HindIII, EcoRI 

L. piscium Packaged 
meat 

 
+ 

 
D* 

Strain-dependent; 
common in 
packaged, late 
shelf-life meat 

EcoRI, ClaI 

* D; strain-dependent 
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5.2 METHODS FOR IDENTIFICATION OF COCCAL LAB 
FROM MEAT (I, II) 

In studies I and II, numerical analysis of ribopatterns was shown to 

differentiate species of enterococci and lactococci. In addition, multilocus 

sequence analysis of pheS and rpoA genes provided species level 

identification of lactococci. Despite the current development of culture-

independent sequencing methods, there is still a need for robust culture-

based methods for the identification of LAB isolates from food.   

Identification of enterococci within the E. avium phylogenetic group 

required polyphasic taxonomic approaches due to the high level of 16S rRNA 

sequence similarity and variation in phenotypic characteristics. Numerical 

analysis of HindIII and EcoRI ribopatterns had a greater resolution power 

than the methods above in the identification of enterococci, especially 

species in the E. avium group. The species detected in MAP broiler products 

were considered as Enterococcus gallinarum, E. casseliflavus and 

Enterococcus gilvus. Strains that were isolated from the air of the broiler 

processing plant were assigned to the species E. gilvus, E. gallinarum, E. 

casseliflavus, Enterococcus durans, Enterococcus malodoratus, 

Enterococcus hermanniensis and E. faecium. E. durans and E. casseliflavus 

were detected in broiler carcasses (Fig. 2). Species level identification of 

enterococci by combined HindIII and EcoRI ribotyping was congruent with 

identification obtained by sequence analysis of rpoA and pheS genes (Naser 

et al., 2005). 

Combined EcoRI and ClaI ribopattern analysis and sequence analysis of 

rpoA and pheS partial gene sequences clearly differentiated species of the 

genus Lactococcus. In ribotyping, the restriction enzymes EcoRI and ClaI 

were shown to provide enough bands for species level identification, 

whereas numerical analysis of HindIII ribopatterns provided only genus level 

identification. In the cluster analysis of both rpoA and pheS partial gene 

sequences, the three subspecies of L. lactis and L. garvieae formed one 

distinct phylogenetic group, whereas the type strains of L. piscium, L. 

raffinolactis, L. plantarum, and L. chungangensis clustered together 

corresponding with the 16S rRNA based phylogeny (Fig. 4). The 63 

representative LAB isolates that were identified as L. piscium by ribotyping, 

clustered with L. piscium type strain. In the analyses, pheS provided the 

highest resolution power of the three genes (at least 95.3% sequence 

similarity within a species), whereas the discrimination with rpoA was 

substantially higher than with 16S rRNA gene (at least 98.3% sequence 

similarity within a species). 
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Fig. 4. Maximum-likelihood tree based on concatenated rpoA and pheS gene sequences of 
22 representative Lactococcus isolates from MAP meat and five Lactococcus type strains. 
Tetragenococcus solitarius is included as an outgroup and bootstrap values above 500 after 
1000 resamplings are shown. 
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5.3 THE ROLE OF LACTOCOCCUS PISCIUM IN MAP 
MEAT (II) 

A majority of the 222 unknown LAB isolates (n=215) from the use-by day, 

MAP meat were identified as L. piscium, whereas seven isolates represented 

the species L. raffinolactis (Fig. 4). L. piscium was shown to grow in a variety 

of MAP meat products, including broiler, pork, turkey and minced meat made 

of beef and pork, where they belonged to the predominating microbiota. 

Previously, only few reports on the isolation of lactococci from meat have 

been available (Sakala et al., 2002a, Barakat et al., 2000). This study 

showed that L. piscium, in particular, is a significant member of the microbial 

association of late shelf-life meat and the involvement of this species in meat 

spoilage deserves further studies (Table 4.). 

All the 21 L. piscium isolates tested for their phenotypic properties grew at 

0.5±0.5°C and were not able to utilise ribose. Supplementation of the growth 

medium with heme did not increase the biomass during aerobic growth of the 

four L. piscium strains tested. This suggests that this species is not 

competent for heme-induced respiration (Brooijmans et al., 2009). Some 

LAB that are often detected in meat together with L. piscium, such as 

species of Leuconostoc and Carnobacterium, are potentially respiring 

organisms (Jääskeläinen et al., 2013, Lechardeur et al., 2011, Brooijmans et 

al., 2009). Respiration metabolism may give a competitive advantage by 

improved growth and survival compared to L. piscium when growing in high-

O2 MAP meat. 

The spoilage potential and competitiveness of two L. piscium isolates 

among the initial microbial contamination of MAP pork was studied in an 

inoculation experiment in comparison with a well-known spoilage organism, 

Brochothrix thermosphacta. The sensory shelf-life of pork inoculated 

separately with L. piscium strains LTM33-6 and JL3-4 (14 and 16 days, 

respectively) was shortened compared to that of an uninoculated control (18 

days), and the odour of the spoiled pork inoculated with the L. piscium 

strains was described as buttery and sour (Fig. 5). This indicates that growth 

of L. piscium contributed to spoilage. However, the spoilage potential of the 

L. piscium strains was substantially lower than that of the B. thermosphacta 

type strain used as a positive control for spoilage; the sensory shelf-life of 

pork inoculated with B. thermosphacta was only 10 days. The ability of B. 

thermospacta to cause sensory defects at a lower cell number than LAB is a 

well-known phenomenon (Betts et al., 2006).  

T-RFLP and ribotyping analyses of samples showed that L. piscium 

strains were growing in pork together with Leuconostoc gelidum subsp. 

gelidum/gasicomitatum present as initial contaminants. In previous studies, 

these Leuconostoc species have been shown to flourish in MAP meat 

(Samelis et al., 2006, Björkroth et al., 2000). In this study, leuconostocs had 

a high growth rate at the beginning of storage and, unlike lactococci, they did 

not show a lag phase. However, lactococci were able to co-exist with 
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leuconostocs until the meat was condemned as spoiled. The co-existence 

and possible interactions of lactococci and leuconostocs in a meat 

environment deserves further studies. 

 
Fig. 5. LAB counts and the time of spoilage of MAP pork inoculated individually with two L. 
piscium strains (LTM33-6 and JL3-4) or B. thermospacta CCUG 35132T or left  uninoculated 
(control), and stored at 6°C for 22 days. The vertical lines represent the time of spoilage. 

5.4 GENETIC DIVERSITY OF LEUCONOSTOC GELIDUM 
SUBSP. GASICOMITATUM STRAINS FROM MEAT 
AND VEGETABLE SOURCES (IV) 

A novel MLST scheme employing seven housekeeping genes was 

developed for determining the population structure within 252 L. gelidum 

subsp. gasicomitatum strains from meat and vegetable sources. The strains 

were chosen for the study based on PFGE types, ribotypes and sources, to 

obtain maximal genetic and ecologic diversity. Forty-six STs were recognised 

within the population, with a majority of the strains (> 60%) representing the 

three most prevalent STs, ST1 (n=86), ST2 (n=40), and ST7 (n=35). The 

STs were divided into three clonal complexes and 17 singletons by goeBurst 

at a single locus variant level, and three groups by BAPS (Fig. 6). Based on 

admixture analysis by BAPS, the level of recombination between the three 

subgroups was very low, indicating clonal expansion. Leuconostoc lactis 

population of 50 dairy isolates had a similar highly clonal population structure 

(Dan et al., 2013), whereas for Lactobacillus sakei recombination was shown 
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to be relatively common (Chaillou et al., 2013). Leuconostocs possess 

several restriction modification systems, which may limit genetic exchange 

and thus prevent succesful recombination and explain the tendency to clonal 

expansion (Roberts et al., 2013, Johansson et al., 2011). 

 

 
 
Fig. 6. Minimum spanning tree reflecting clonal relationships of 46 Leuconostoc gelidum 
subsp. gasicomitatum STs at SLV level constructed using goeBurst. A circle represents 
each ST, and the size of the circle is proportional to the number of isolates represented by 
that ST. The color of each circle represents the BAPS cluster of the strains belonging to that 
ST. 

 

The STs in CC1 consisted mostly of strains from a variety of MAP meat 

sources, whereas the STs in CC2 contained strains from vegetables and 

MAP poultry, indicating niche specificity of the subpopulations. BAPS cluster 

2 contained 97% of the vegetable strains and 45% of the MAP poultry 

strains, whereas most of the MAP meat strains were located in BAPS cluster 

1. The results may indicate that there is a subpopulation within L. gelidum 

subsp. gasicomitatum, which is specialised in growing in a variety of MAP 

meat and/or surviving in a meat processing environment. PFGE typing of 384 

L. gelidum subsp. gasicomitatum isolates from meat and vegetable sources, 

including the strains in this study, also supported this conclusion (Vihavainen 

et al., 2009). The few available contamination studies of leuconostocs in 

meat processing plants indicate that these spoilage bacteria are constantly 

introduced into the processing environment instead of forming an in-house 

microbiota (Vihavainen et al., 2007, Björkroth et al., 1996, 1997). Similar 

results were obtained for a vegetable processing plant (Pothakos et al., 

2014c). The connection between vegetable and poultry strains requires 

further studies with more isolates from different niches. This MLST scheme 
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provides a tool for characterising isolates of L. gelidum subsp. gasicomitatum 

from spoilage studies, and the 46 STs a basis for a MLST database of this 

important spoilage organism. 
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6 CONCLUSIONS 

1. The formerly unidentified LAB strains isolated from the air of a broiler 

processing plant represent a novel species, Enterococcus viikkiensis 

sp. nov. 

 

2. The formerly unidentified LAB strains from vacuum/modified 

atmosphere packaged meat represent a novel subspecies, 

Leuconostoc gelidum subsp. aenigmaticum subsp. nov. Leuconostoc 

gasicomitatum was reclassified as Leuconostoc gelidum subsp. 

gasicomitatum subsp. comb. nov. and Leuconostoc gelidum 

designated as Leuconostoc gelidum subsp. gelidum subsp. nov.   

 

3. Numerical analysis of combined HindIII and EcoRI ribopatterns was of 

considerable assistance in species level identification of enterococci 

within the E. avium group. Numerical analyses of EcoRI and ClaI 

ribopatterns and phylogenetic sequence analyses of rpoA and pheS 

genes were reliable tools in species level identification of meat 

lactococci. 

 

4. Lactococcus piscium formed part of the predominating microbiota in a 

variety of MAP meat products including broiler, turkey, pork and 

minced meat from beef and pork. The growth of L. piscium together 

with Leuconostoc spp. shortened the shelf-life of MAP meat.   

 

5. The population of 252 L. gelidum subsp. gasicomitatum strains from 

meat and vegetable sources was divided into three subgroups, with 

evidence of niche specificity and a low level of exchange of genetic 

material between the subgroups. 
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